High-Performance Liquid Chromatography for Hormone Assay

  • John W. Honour
Part of the Methods in Molecular Biology book series (MIMB, volume 324)

Abstract

High-performance liquid chromatography (HPLC) is a refinement of traditional column chromatographic techniques. The speed of analysis and the resolution are increased with new column-packing materials and eluant pumped through the column at high pressure. The potential for achieving measurements of hormones in small volumes of plasma or urine is limited, both in normal and pathological situations. Using HPLC with ultraviolet absorption, the detection limit is only nanogram amounts of hormones per milliliter of blood serum. The applications of the technique to specific hormones from recent and older literature will be used throughout this chapter to illustrate aspects of the technology.

Key Words

HPLC UV absorption reproductive steroids andrenal steroids thyroxine insulin angiotensins melatonin neuropeptides endorphins renin 

References

  1. 1.
    Schnedl, W. J., Krause, R., Halwachs-Baumann, G, Trinker, M. Lipp, R. W. and Krejs, G. J. (2000) Evaluation of HbA1c determination methods in patients with hemoglobinopathies. Diabetes Care 23, 339–344.PubMedCrossRefGoogle Scholar
  2. 2.
    Pappa, A., Seferiades, K., Fotsis, T., et al. (1999) Purification of a candidate gonadotrophin surge attentuating factor from human follicular fluid. Hum. Reprod. 14, 1449–1456.PubMedCrossRefGoogle Scholar
  3. 3.
    Slominski, A., Szczesniewski, A., and Wortsman, J. (2000) Liquid chromatography-mass spectrometry detection of corticotrophin-releasing hormone and pro-opiomelanocortin-derived peptides in human skin. J. Clin. Endocrinol. Metab. 85, 3252–3258.Google Scholar
  4. 4.
    Slominski, A., Heasley, D., Mazurkiewicz, J. E., Ermak, G., Baker, J., and Carlson, J. A. (1999) Expression of proopiomelanocortin (POMC)-derived melanocyte-stimulating hormone (MSH)= and adrenocorticotropic hormone (ACTH) peptides in skin of basal cell carcinoma patients. Hum. Pathol. 30, 208–215.PubMedCrossRefGoogle Scholar
  5. 5.
    Gardi, J., Khalil, W. K., Vecsernyes, M. Gaspar, L., Szecsi, M., and Julesz, J. (2000) Molecular forms of alpha-melanocyte-stimulating hormone in phaeochromocytoma tissue. Endocr. Res. 26, 71–79.PubMedCrossRefGoogle Scholar
  6. 6.
    O’Connor, J. V. (1999) Chromatography of recombinant proteins. Dev. Biol. Stand. 97, 39–47.PubMedGoogle Scholar
  7. 7.
    Lu, R., Kopeckova, P., and Kopecek, J. (1999) Degradation and aggregation of human calcitonin in vitro. Pharm. Res. 16, 359–367.CrossRefGoogle Scholar
  8. 8.
    Gonzalo-Lumbreras, R. and Izquierdo-Hornillos, R. (2000) Optimization of the high performance liquid chromatography separation of a complex mixture containing urinary steroids, boldenone and bolasterone: application to urinary samples. J. Chromatogr. B. Biomed. Sci. 26, 47–57.CrossRefGoogle Scholar
  9. 9.
    Linde, S., Welinder, B. S., and Nielsen, J. H. (1993) Analysis of proinsulin and its conversion products by reverse phase high performance liquid chromatography. J. Chromatogr. 614, 185–204.PubMedCrossRefGoogle Scholar
  10. 10.
    Ohkubo, T. (1994) High performance liquid chromatographic analysis of peptide hormones in transplanted rat islets. Biomed. Chromatogr. 8, 301–305.PubMedCrossRefGoogle Scholar
  11. 11.
    Oliva, A., Farina, J., and Llabres, M. (2000) Development of two high performance liquid chromatographic methods for the analysis and characterisation of insulin= and its degradation products in pharmaceutical preparations. J. Chromatogr..B Biomed. Sci. 749, 25–34.CrossRefGoogle Scholar
  12. 12.
    Nakamura, K., Nashimoto, M., Hori, Y., and Yamamoto, M. (2000) Serum 25-hydroxyvitamin D concentrations and related dietary factors in peri-and postmenopausal Japanese women. Am. J. Clin. Nutr. 71, 1161–1165.PubMedGoogle Scholar
  13. 13.
    Kim, J. H. and Moon, S. J. (2000) Time spent outdoors and seasonal variation in serum concentrations of 25-hydroxyvitamin D in Korean women. Int. J. Food Sci. 51, 439–451.CrossRefGoogle Scholar
  14. 14.
    Bi, M. and Singh, J. (2000) Effect of buffer, pH, buffer concentration and skin with or without enzyme inhibitors on the stability of [Arg(8)]-vasopressin. Int. J. Pharm. 197, 87–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Ando, T., Koshika, S., Komura, K., Nakayama, Y., and Hara, S. (1986) Characterisation of packing columns for the liquid chromatographic determination of corticosteroids in human plasma. J. Liquid. Chrom. 9, 2601–2608.CrossRefGoogle Scholar
  16. 16.
    Fantl, V., Lim, C. K., and Gray, C. H. (1976) in High Pressure Liquid Chromatography in Clinical Chemistry (Dixon, P.F. Gray, C.H. Lim, C.K., and Stoll. M..S. eds.) Academic Press, London.Google Scholar
  17. 17.
    Musey, P. I., Collins, D. C., and Preedy, J. (1979) Separation of oestrogen conjugates by high performance liquid chromatography. Steroids 31, 583–592.CrossRefGoogle Scholar
  18. 18.
    Adamcztk, M., Gebler, J. C., and Wu, J. (2000) Sequencing of antithyroxine monoclonal antibody fab fragment by ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 14, 999–1007.CrossRefGoogle Scholar
  19. 19.
    O’Hare, M. J., Nice, E. C., Magee-Brown, R., and Bullman, H. (1976) High performance liquid chromatography of steroids secreted by human adrenal and testis cells in monolayer culture J. Chromatogr. 125, 357–367.PubMedCrossRefGoogle Scholar
  20. 20.
    Schoneshofer, M. and Dulce, H. J. (1979) Comparison of different high performance liquid chromatographic systems for the purification of adrenal and gonadal steroids prior to immunoassay. J. Chromatogr. 164, 17–28.PubMedCrossRefGoogle Scholar
  21. 21.
    O’Hare, M. J., Nice, E. C., and Capp, M. (1980) Reversed and normal phase high performance liquid chromatography of 18-hydroxylated steroids and their derivatives. Comparison of selectivity, efficiency and recovery from biological samples. J. Chromatogr. 198, 23–29.PubMedCrossRefGoogle Scholar
  22. 22.
    O’Hare, M. and Nice, E. C. (1981) Analysis of steroid hormones in adrenal and testicular cells and tissues, in Steroid Analysis by HPLC: Recent Applications (Kautsky, K. P., ed.) Marcel Dekker Inc., NY, pp. 277–322.Google Scholar
  23. 23.
    Miller, C. and Rivier, J. (1996) Peptide chemistry: development of high performance liquid chromatography and capillary zone electrophoresis. Biopolymers 40, 265–317.PubMedCrossRefGoogle Scholar
  24. 24.
    Majid, O., Akhlaghi, F., Lee, T., Holt, D. W., and Trull, A. (2001) Simultaneous determination of plasma prednisolone, prednisone and cortisol levels by high performance liquid chromatography. Ther. Drug Monitor 23, 163–168.CrossRefGoogle Scholar
  25. 25.
    Hara, S., Fujii, Y., Hirasawa, M., and Miyamoto, S. (1978) Systematic design of binary solvent systems for liquid solid chromatography via retention behaviour of mono-and di-functional steroids on silica gel columns. J. Chromatogr. 149, 680–703.CrossRefGoogle Scholar
  26. 26.
    Capp, M. W. and Simonian, M. H. (1985) Separation of the major adrenal steroids by reverse phase high performance liquid chromatography Anal. Biochem. 147, 374–381.PubMedCrossRefGoogle Scholar
  27. 27.
    Wei, J-Q., Wei, J-L., Zhou, X-T., and Cheng, J-P. (1990) Isocratic reversed phase high performance liquid chromatography determination of twelve natural corticosteroids in serum with on-line ultraviolet and fluorescence detection. Biomed. Mass Spectrom. 4, 161–164.Google Scholar
  28. 28.
    Burgess, C. (1978) Rapid reverse phase high performance liquid chromatographic analysis of steroid products. J. Chromatogr. 149, 233–240.PubMedCrossRefGoogle Scholar
  29. 29.
    Hara, S. and Hayashi, S. (1977) Correlation of retention behaviour of steroid pharmaceuticals in polar and bonded reverse phase liquid column chromatography J. Chromatogr. 142, 689–703.PubMedCrossRefGoogle Scholar
  30. 30.
    D’Agostino, G., Castagnetta, L., Mitchell, F., and O’Hare, M. J. (1985) Computer aided mobile phase optimisation and chromatogram simulation in HPLC. A review. J. Chromatogr. 338, 1–23.CrossRefGoogle Scholar
  31. 31.
    Wei, J-Q., Wei, J-L., and Zhou, X-T. (1990) Optimisation of an isocratic reverse phase performance liquid chromatographic system for the separation of fourteen steroids using factorial design and computer simulation. Biomed. Chromatogr. 4, 34–38.PubMedCrossRefGoogle Scholar
  32. 32.
    Kreutzmann, D. J. and Silink, M. (1987) Determination of 17-oxosteroid glucuronides and sulphates in urine by liquid chromatography using 2,4-dinitrophenylhydrazine as a prelabelling reagent for spectrophotometric detection. J. Chromatogr. 415, 253–260.PubMedCrossRefGoogle Scholar
  33. 33.
    Derks, H. J. G. M. and Drayer, N. M. (1978) The identification and quantification of three new 6α-hydroxylated corticosteroids in human neonatal urine. Steroids 31, 289–305.PubMedCrossRefGoogle Scholar
  34. 34.
    Dolan, J. W., Snyder, L. R., Djordjevic, N. M., et al. (1998) Simultaneous variation of temperature and gradient steepness for reversed phase high performance liquid chromatography method development. I Application to 14 different samples using computer simulation. J. Chromatogr. A. 803, 1–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Shimada, K., Tanaka, T., and Nambara, T. (1979) Studies on steroids CI Separation of catechol oestrogens by high performance liquid chromatography with electrochemical detection. J. Chromatogr. 178, 350–354.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimada, K., Xie, F., and Nambara, T. (1986) Studies on steroids CCXIX. Separation and determination of 4-hydroxyoestriol monoglucuronides and monosulphates in biological fluids by high performance liquid chromatography with electrochemical detection. J. Chromatogr. 378, 17–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Tscherne, R. J. and Capitano, G. (1977) High pressure liquid chromatographic separation of pharmaceutical compounds using a mobile phase containing silver nitrate. J. Chromatogr. 136, 337–341.PubMedCrossRefGoogle Scholar
  38. 38.
    Andreolini, F., Borra, C., Caccamo, F., Di Corcia, A., and Samperi, R. (1987) Estrogen conjugates in late-pregnancy fluids-extraction and group separation by a graphitised carbon black cartridge and quantification by high performance liquid chromatography. Anal. Chem. 59, 1720–1725.PubMedCrossRefGoogle Scholar
  39. 39.
    Shimada, K. and Nonaka, M. (1991) Utility of cyclodextrin in mobile phase for high performance liquid chromatography of C21 steroids. J. Liquid Chromatogr. 14, 2109–2117.CrossRefGoogle Scholar
  40. 40.
    Agnus, B., Sebille, B., and Gosselet, N. M. (1991) Effect of β-cyclodextrin in the mobile phase on the retention and indirect retention of non-electrolytes in reverse phase liquid chromatography. J. Chromatogr. 552, 583–592.CrossRefGoogle Scholar
  41. 41.
    Lamparczyx, H., Zarzycki, P. K., and Nowakowska, J. (1994) Application of beta-cyclodextrin for the analysis of estrogenic steroids in human urine by high performance liquid chromatography. Chromatographia 38, 168–172.CrossRefGoogle Scholar
  42. 42.
    Darby, S. M., Miller, M. L., Allen, R. O., and LeBeau, M. (2001) A mass spectrometric method for quantitation of intact insulin in blood samples. J. Anal. Toxic. 25, 8–14.Google Scholar
  43. 43.
    Grippa, E., Santini, L., Castellano, G., Gatto, M. T., Leone, M. G., and Saso, L. (2000) Simultaneous determination of hydrocortisone, dexamethasone, indomethacin, phenybutazone and oxyphenbutazone in equine serum by high performance liquid chromatography. J. Chromatogr. B Biomed. Sci. 738, 17–25.CrossRefGoogle Scholar
  44. 44.
    Naik, G. O., Moe, G. W., and Armstrong, P. W. (2001) Specific and non-specific measurements of angiotensin II cascade members. J. Pharm. Biomed. Anal. 24, 947–955.PubMedCrossRefGoogle Scholar
  45. 45.
    Lin, W-J., Her, S-J., Chen, P-F., and Chen, R. R-L. (1998) Determination of medrogestone in plasma by high performance liquid chromatography. J. Chromatogr. B. 714, 263–268.CrossRefGoogle Scholar
  46. 46.
    Seki, T. and Yamaguchi, Y. (1984) New fluorometric detection method of corticosteroids after high performance liquid chromatography using post-column derivatization bezamidine. J. Chromatogr. 305, 188–193.PubMedCrossRefGoogle Scholar
  47. 47.
    Satyaswaroop, P. G., de la Osa, E. L., and Gurpide, E. (1977) High pressure liquid chromatographic separation of C18 and C19 steroids. Steroids 30, 139–145.PubMedCrossRefGoogle Scholar
  48. 48.
    Watanabe, K. and Yoshizawa, I. (1985) Clinical analysis of steroids XXXI. Assay of oestradiol-17-sulphate 4 hydroxylase activity by high performance liquid chromatography with electrochemical detection. J. Chromatogr. 337, 114–120.PubMedCrossRefGoogle Scholar
  49. 49.
    Fernandez, N., Garcia, J. J., and Diez, M. J. (1993) Rapid high performance liquid chromatographic assay of ethinylestradiol in rabbit plasma. J. Chromatogr. Biomed. Appl. 619, 143–147.CrossRefGoogle Scholar
  50. 50.
    Sastro Torano, J., Rijn-Baker, P. V., Merkus, P., and Guchelaar, H. J. (2000) Quantitative determination of melatonin in human plasma and cerebrospinal fluid with high performance liquid chromatography and fluorescence detection. Biomed. Chromatogr. 14, 306–310.CrossRefGoogle Scholar
  51. 51.
    Harumi, T. and Matsushima, S. (2000) Separation and assay methods for melatonin= and its precursors. J. Chromatogr. B Biomed. Sci. 747, 95–110.CrossRefGoogle Scholar
  52. 52.
    Tan, D., Manchester, D. L. C., Reiter, R. J., Qi, W., Hanes, M. A., and Farley, N. J. (1999) High physiological levels of melatonin in bile of mammals. Life Sci. 65, 2523–2529.PubMedCrossRefGoogle Scholar
  53. 53.
    Andrisano, V., Bertucci, C., Battaglia, A., and Cavrini, V. (2000) Photostability of drugs: photodegradation of melatonin and its determination in commercial formulations. J. Pharm. Biomed. Anal. 23, 15–23.PubMedCrossRefGoogle Scholar
  54. 54.
    Bizanek, R., Manes, J. D., and Fujinari, E. M. (1996) Chemiluminesent nitrogen detection as a new technique for purity assessment of synthetic peptides separated by reversed phase HPLC. Pept. Res. 9, 40–44.PubMedGoogle Scholar
  55. 55.
    Lam, S., Malikin, G., and Karmen, A. (1988) High performance liquid chromatography of hydroxysteroids detected with post-column immobilised enyme reactors. J. Chromatogr. 441, 81–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Hamase, K., Tomita, T., Kiyomizu, A., and Zaitsu, K. (2000) Determination of pineal melatonin by precolumn derivatization reverse phase high performance liquid chromatography and its application to the study of circadian rhythm in rats and mice. Anal. Biochem. 279, 106–110.PubMedCrossRefGoogle Scholar
  57. 57.
    Kessler, M. J. (1983) Quantitation of radiolabelled biological molecules by high performance liquid chromatography. J. Chromatogr. 225, 209–217.CrossRefGoogle Scholar
  58. 58.
    Lundmo, P. and Sunde, E. (1984) Rapid analysis of C19 steroid metabolism by high performance liquid chromatography and inline monitoring of radioactivity. J. Chromatogr. 308, 289.PubMedCrossRefGoogle Scholar
  59. 59.
    Niiyama, S., Happle, R., and Hofmann, R. (2001) Influence of estrogens on the androgen metabolism in different subunits of human hair follicles. Eur. J. Dermatol. 11, 195–198.PubMedGoogle Scholar
  60. 60.
    Lonning, P. E., Geisler, J., Johannessen, D. C., et al. (2001) Pharmacokinetics and metabolism of formestane in breast cancer patients. J. Steroid Biochem. Mol. Biol. 77, 39–47.PubMedCrossRefGoogle Scholar
  61. 61.
    Asaba, H., Hosoya, K., Takanaga, H., et al. (2000) Blood brain barrier is involved in the efflux transport of a neuroactive steroid, dehydroepiandrosterone sulphate, via organic anion transporting polypeptide 2. J. Neurochem. 75, 1907–1916.PubMedCrossRefGoogle Scholar
  62. 62.
    Gentile, D. M., Tomlinson, E. S., Maggsm J. L., Park, K., and Back, D. J. (1996) Dexamethasone metabolism by human liver in vitro. Metabolite identification and inhibition of 6-hydroxylation. J. Pharm. Exper. Ther. 277, 105–112.Google Scholar
  63. 63.
    Ohno, M., Yamaguchi, I., Saiki, K., Yamamoto, I., and Azuma, J. (2000) Specific determination of urinary 6-beta-hydroxycortisol and cortisol by liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 746, 95–101.PubMedCrossRefGoogle Scholar
  64. 64.
    Tang, C., Kassahun, K., McIntosh, I. S., Brunner, J., and Rodrigues, A. D. (2000) Simultaneous determination of urinary free cortisol and 6-beta-hydroxycortisol by liquid chromatography atmospheric pressure chemical ionisation tandem mass sepctrometry and its application for estimating hepatic CYP3A induction. J. Chromatogr. B Biomed. Sci. Appl. 742, 303–313.PubMedCrossRefGoogle Scholar
  65. 65.
    Mitamura, K., Yatera, M., and Shimada, K. (2000) Studies on neurosteroids XII. Determination of enzymatically formed catechol estrogens and guaiacol estrogens by rat brains using liquid chromatography mass spectrometry mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 748, 89–96.PubMedCrossRefGoogle Scholar
  66. 66.
    Jia, Q., Hong, M. F., Pan, Z. X., and Orndorff, S. (2001) Quantitation of urine 17-ketosteroid sulfates and glucuronides by high performance liquid chromatography ion trap mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 750, 81–91.PubMedCrossRefGoogle Scholar
  67. 67.
    Wu, Z., Zhang, C., Yang, C., Zhang, X., and Wu, E. (2000) Simultaneous quantitative determination of norgestrel and progesterone in human serum by high performance liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionisation. Analyst 125, 2201–2205.PubMedCrossRefGoogle Scholar
  68. 68.
    Nassar, A. E., Varshney, N., Getek, T., and Cheng, L. (2001) Quantitative analysis of hydrocortisone in human urine using a high performance liquid chromatographic tandem mass spectrometric atmospheric pressure chemical ionization method. J. Chromatogr. Sci. 39, 59–64.PubMedGoogle Scholar
  69. 69.
    Wudy, S. A., Hartmann, M., and Svoboda, M. (2000) Determination of 17-hydroxyprogesterone in plasma by stable isotope dilution/benchtop liquid chromatography tandem mass spectrometry. Horm. Res. 53, 68–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Desiderio, D. M. (1996) Mass spectrometry, high performance liquid chromatography and brain peptides. Biopolymers 40, 257–264.PubMedCrossRefGoogle Scholar
  71. 71.
    van den Burg, E. H., Metz, J. R., Arends, R. J., et al. (2001) Identification of beta-endorphins in the pituitary gland and blood plasma of the common carp (Cyprinus carpio). J. Endocrinol. 169, 271–280.CrossRefGoogle Scholar
  72. 72.
    Qian, M. G. and Lubman, D. M. (1996) Procedures for tandem mass spectrometry on an ion trap storage/reflectron time of flight mass spectrometer. Rapid Commun. Mass Spectrom. 10, 1911–1920.PubMedCrossRefGoogle Scholar
  73. 73.
    Naylor, S., Johnson, K. L., Willaimson, B. L., Klarskov, K., and Gleich, G. J. (1999) Structural characterisation of contaminants in commercial preparations of melatonin by on-line HPLC electrospray ionization tandem mass spectrometry. Adv. Exp. Biol. Med. 467, 769–777.Google Scholar
  74. 74.
    Jonscher, K., Currie, G., McCormack, A. L., and Yates, J. R. (1993) Matrix assisted laser desorption of peptides and proteins on a quadrupole ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 7, 20–26.PubMedCrossRefGoogle Scholar
  75. 75.
    Hensel, R. R., King, R. C., and Owens, K. G. (1997) Electrospray sample preparation for improved quantitation in matrix assisted laser desorption/ioniation mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1785–1793PubMedCrossRefGoogle Scholar
  76. 76.
    Fredline, V. F., Kovacs, E. M., Taylor, P. J., and Johnson, A. G. (1999) Measurement of plasma renin activity with use of HPLC electrospray tandem mass spectrometry. Clin. Chem. 45, 659–664.PubMedGoogle Scholar
  77. 77.
    DeBrandendere, V. I., Hou, P., Stockl, D., Thienpont, L. M., and De Leenheer, A. P. (1998) Isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry for the determination of thyroxine as a potential reference method. Rapid Commun. Mass Spectrom. 12, 1099–1103.CrossRefGoogle Scholar
  78. 78.
    Fell, A. F., Scott, H. P., Gill, R., and Moffat, A. C. (1983) Novel techniques for peak recognition and deconvolution by computeraided photodiode array detection in high performance liquid chromatography. J. Chromatogr. 282, 123–140.CrossRefGoogle Scholar
  79. 79.
    Mawer, E. B., Jones, G., Davies, M., et al. (1998) Unique 24-hydroxylated metabolites represent a significant pathway of metabolism of vitamin D2 in humans: 24-hydroxyvitaminDs and 1,24-dihydroyvitamin D2 detectable in human serum. J. Clin. Endocrinol. Metab. 83, 256–266.CrossRefGoogle Scholar
  80. 80.
    Homma, M., Beckerman, K., Hayashi, S., et al. (2000) Liquid chromatographic determination of urinary 6 beta-hydroxycortisol to assess cytochrome P-450 3A activity in HIV positive pregnant women. J. Pharm. Biomed. Anal. 23, 629–635.PubMedCrossRefGoogle Scholar
  81. 81.
    Barbaccia, M. L., Lello, S., Sidiropoulo, T., et al. (2000) Plasma 5-alpha-androstane-3-alpha, 17-beta diol, an endogenous steroid that positively modulates GABA (A) receptor function and anxiety: a study in menopausal women. Psychoneuroendocrinology 25, 659–675.PubMedCrossRefGoogle Scholar
  82. 82.
    Hampl, R., Hill, M., Sterzi, I., and Star, L. (2000) Immunomodulatory 7-hydroxylated metabolites of dehydroepiandrosterone are present in human semen. J. Steroid Biochem. Mol. Biol. 75, 273–276.PubMedCrossRefGoogle Scholar
  83. 83.
    Schonesshofer, M., Fenner, A., and Dulce, H. J. (1981) Assessment of eleven adrenal steroids from a single sample by combination with automated high performance liquid chromatograpy and radioimmunoassay. J. Steroid Biochem. 14, 377–386.CrossRefGoogle Scholar
  84. 84.
    Rasmussen, T. N., Bersani, M., Johnsen, A. H., Kofod, H., and Holst, J. J. (1994) Pigs produce only a single form of CGRP part of which is processed to N-and C-terminal fragments. Peptides 15, 89–94.PubMedCrossRefGoogle Scholar
  85. 85.
    Tagliaro, F., Camilot, M., Valentini, R., Mengarda, F., Antoniazzi, F., and Tato, L. (1998) Determination of thyroxine in the hair of neonates by radioimmunoassay with high performance liquid chromatographic confirmation. J. Chromatogr. B Biomed. Anal. 716, 77–82.CrossRefGoogle Scholar
  86. 86.
    Zhao, X., White, R., Huang, B. S., Van Huysse, J., and Leenen, F. H. (2001) High salt intake and the brain renin-angiotensin system in Dahl salt-sensitive rats. J. Hypertens. 19, 89–98.PubMedCrossRefGoogle Scholar
  87. 87.
    Deacon, C. F., Nauck, M. A., Meier, J., Hucking, K., and Holst, J. J. (2000). Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for intact peptide. J. Clin. Endocrinol. Metab. 85, 3575–3581.PubMedCrossRefGoogle Scholar
  88. 88.
    Shackleton, C. H. L. and Whitney, J. O. (1980) Use of Sep Pak cartridges for urinary steroid extractions: evaluation of the method for use prior to gas chromatographic analysis. Clin. Chim. Acta 107, 231–243.PubMedCrossRefGoogle Scholar
  89. 89.
    Morris, D. J. and Tsai, R. (1981) Chromatographic separation of aldosterone and its metabolites. Adv. Chromatogr. 19, 261–285.PubMedGoogle Scholar
  90. 90.
    Schoneshofer, M., Kager, A., and Weber, B. (1983) New “on-line” sample pre-treatment procedure for routine liquid chromatographic assay of low concentration compounds in body fluids, illustrated by triamcinolone assay. Clin. Chem. 29, 1367–1371PubMedGoogle Scholar
  91. 91.
    Turnell, D. C. and Cooper, J. D. H. (1987) Automated sequential process for preparing samples for analysis by high performance liquid chromatography. J. Chromatogr. 395, 613–621.PubMedCrossRefGoogle Scholar
  92. 92.
    Turnell, D. C., Cooper, J. D. H., Green, B., Hughes, G., and Wright, D. J. (1988) Totally automated liquid chromatographic assay for cortisol and associated glucocorticoids in serum with ASTED® sample preparation. Clin. Chem. 34, 1816–1820.PubMedGoogle Scholar
  93. 93.
    Andersson, S. H. G., and Sjovall, J. (1985) Analysis of profiles of unconjugated steroids in testicular tissue by gas chromatography mass spectrometry. J. Steroid Biochem. 23, 469–475.PubMedCrossRefGoogle Scholar
  94. 94.
    Creaser, C. S., Feely, S.J., Houghton, E., and Seymour, M. (1998) Immunoaffinity chromatography combined on-line with highperformance liquid chromatography-mass spectrometry for the determination of corticosteroids. J. Chromatogr. A. 794, 37–43.PubMedCrossRefGoogle Scholar
  95. 95.
    Novotny, M., Karlsson, K-E., and Konishi, M. (1984) New biochemical separations using pre-columnn derivatisation and microcolumm liquid chromatography. J. Chromatogr. 305, 159–167.CrossRefGoogle Scholar
  96. 96.
    Kawasaki, T., Maeda, M., and Tsuli, A. (1982) Determination of 17-oxosteroid glucuronides and sulphates in urine and serum by fluoresence high performance liquid chromatography using dansyl hydrazine as a pre-labelling reagent. J. Chromatogr, 233, 61–68.PubMedCrossRefGoogle Scholar
  97. 97.
    Iohan, F., Vincze, I., Moonder, C., and Cohen, S. (1991) High performance liquid chromatographic determination of cortolic and cortolonic acids as pyrenyl ester derivatives. J. Chromatogr. 564, 27–41.PubMedCrossRefGoogle Scholar
  98. 98.
    Kayama, M. and Taniguchi, H. (1993) Determination of estrogens in plasma by high performance liquid chromatography after precolumn derivatization with 2-(4-carboxyphenyl)-5.6 dimethylbezimidazole. J. Chromatogr. 616, 317–322.CrossRefGoogle Scholar
  99. 99.
    Katayama, M., Masuda, Y., and Taniguchi, H. (1993) Determination of corticosteroids in plasma by high performance liquid chromatography after pre-column derivatization with 2-(4-carboxyphenyl)-5.6 dimethylbezimidazole. J. Chromatogr, 612, 33–39.PubMedCrossRefGoogle Scholar
  100. 100.
    Fredline, V. F., Kovacs, E. M., Taylor, P. J., and Johnson, A. G. (1999) Measurement of plasma rennin activity with use of HPLC electrospray tandem mass spectrometry. Clin. Chem. 45, 659–664.PubMedGoogle Scholar
  101. 101.
    Burch, J. B., Reif, J. S., Noonan, C. W., and Yost, M. G. (2000) Melatonin levels in workers exposed to 60-HZ magnetic fields: work in substations and with 3-phase conductors. J. Occup. Environ. Med. 42, 136–142.PubMedCrossRefGoogle Scholar
  102. 102.
    Sanz-Nebot, V., Toro, I., Castillo, A., and Barbosa, J. (2001) Investigation of synthetic peptide hormones by liquid chromatography couples to pneumatically assisted electrospray ionization mass spectrometry: analysis of a synthesis of crude peptide triptorelin. Rapid Commun. Mass Spectrom. 15, 1031–1039.PubMedCrossRefGoogle Scholar
  103. 103.
    Cirimele, V., Kintz, P., Dumestre, V., Goulle, J. P., and Ludes, B. (2000) Identification of ten corticosteroids in human hair by liquid chromatrography ionspray mass spectrometry. Forensic Sci. Int. 107, 381–388.PubMedCrossRefGoogle Scholar
  104. 104.
    Fitzpatrick, J. L., Ripp, S. I., Smith, N. B., Pierce, W. M., and Prough, R. A. (2001) Metabolism of DHEA by cytochromes P450 in rat and human liver microsomal fractions. Arch. Biochem. Biophys. 389, 278–287.PubMedCrossRefGoogle Scholar
  105. 105.
    Garcia, S. I., Porto, P. I., Martinez, V. N., et al. (2000) Expression of TRH and TRH-like peptides in a human glioblastoma-astrocytoma cell line (U-373-MG). J. Endocrinol. 166, 697–703.PubMedCrossRefGoogle Scholar
  106. 106.
    Ghilchik, M.W. Tobaruela, M. del Rio-Garcia, J., and Smyth, D.G. (2000) Characterization of neural TRH-like peptides in mammary gland and mammary tumors and milk. Biochim. Biophys. Acta 1475, 55–60.PubMedGoogle Scholar
  107. 107.
    Krishnan, K. A., Proudman, G. A., and Bahr, J. M. (1994) Purification and partial characterization of isoforms of luteinizing hormone from the chicken pituitary gland. Comp. Biochem. Physiol. Biochem. Mol. Biol. 108, 253–264.PubMedCrossRefGoogle Scholar
  108. 108.
    Tanabe, S., Shimohigashi, Y., Nakayama, Y., et al. (1999) In vivo and in vitro evidence of blood brain barrier transport of a novel cationic arginine-vasopressin fragment 4–9 analog. J. Pharmacol. Exp. Ther. 290, 561–568.PubMedGoogle Scholar
  109. 109.
    Amoresano, A., Siciliano, R., Orru, S., et al. (1996) Structural characterisation of human recombinant glycohormones follitropin, lutropin and chorionic gonadotropin expressed in Chinese hamster ovary cells. Eur. J. Biochem. 242, 608–618.PubMedCrossRefGoogle Scholar
  110. 110.
    Secchi, C., Berrini, A., Gaggioli, D., and Borromeo, V. (2001) Amino acid modifications in canine, equine and porcine pituitary growth hormones identified by peptide-mass mapping. J. Chromatogr. B Biomed. Sci. Appl. 757, 237–245.PubMedCrossRefGoogle Scholar
  111. 111.
    Janaky, T., Szabo, P., Kele, Z., et al. (1998) Identification of oxytocin and Vasopressin from neurohypophyseal cell culture. Rapid Commun. Mass Spectrom. 12, 1765–1768.PubMedCrossRefGoogle Scholar
  112. 112.
    Liu, C. L. and Bowers, L. D. (1996) Immunoaffinity trapping of urinary chorionic gonadotrophin and its high performance liquid chromatography mass spectrometric confirmation. J. Chromatogr. B Biomed. Sci. Appl. 687, 213–220.CrossRefGoogle Scholar
  113. 113.
    Liu, C. L. and Bowers, L. D. (1997) Mass spectromic characterization of nicked fragments of the beta-subunit of human chorionic gonadotropin. Clin. Chem. 43, 1172–1181.PubMedGoogle Scholar
  114. 114.
    Black, R. S. and Bowers, L. D. (2000) Mass spectromic characterization on the beta-subunit of human chorionic gonadotropin. Methods Mol. Biol. 146, 337–354.PubMedGoogle Scholar
  115. 115.
    de Kock, S. S., Rodgers, J. P., and Swanepoel, B. C. (2001) Growth hormone abuse in the horse: preliminary assessment of a mass spectrometric procedure for IGF-1 identification and quantitation. Rapid Commun. Mass Spectrom. 15, 1191–1197.PubMedCrossRefGoogle Scholar
  116. 116.
    Rafferty, B., Corran, P., and Bristow, A. (2001) Multicenter collaborative study to calibrate salmon calcitonin by bioassay and high performance liquid chromatography: establishment of the third international standard. Bone 29, 84–89.PubMedCrossRefGoogle Scholar
  117. 117.
    Iitake, M., Kawasaki S., Sakurai, S., et al. (1998) Serum substances that interfere with thyroid hormone assays in patients with chronic renal failure. Clin. Endocrinol. (Oxf) 48, 739–746.CrossRefGoogle Scholar
  118. 118.
    Fredline, V. F., Taylor, P. J., Dodds, H. M., and Johnson, A. G. (1997) A reference method for the analysis of aldosterone in blood by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry. Anal. Biochem. 252, 308–313.PubMedCrossRefGoogle Scholar
  119. 119.
    Kippen, A. D., Cerini, F., Vadas, L., Stocklin, R., Vu, L., Offord, R. E., and Rose, K. (1997) Development of an isotope dilution assay for precise determination of insulin, C-peptide and proinsulin levels in non-diabetic and type II diabetic individuals with comparison to immunoassay. J. Biol. Chem. 272, 12,513–12,522.PubMedCrossRefGoogle Scholar
  120. 120.
    Kobayashi, N., Kanai, M., Seta, K., and Nakamura, K. (1995) Quantitative analysis of synthetic human calcitonin by liquid chromatography mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 672, 17–23.CrossRefGoogle Scholar
  121. 121.
    Peran, S., Garriga, M. G., Morreale de Esscobar, G., Asuncion, M., and Peran, M. (1997) Increase in thyrotropin levels in hypothyroid patients during treatment due to a defect in the commercial preparation. J. Clin. Endocrinol. Metab. 82, 3192–3195.PubMedCrossRefGoogle Scholar
  122. 122.
    Thienpont, L. M., Fierens, C., De Leenheer, A. P., and Przywara, L. (1999) Isotope dilution gas chromatrography mass spectrometry and liquid chromatography electrospray ionization tandem mass spectrometry for the determination of triiodo-L-thyronine in serum. Rapid Commun. Mass Spectrom. 13, 1924–1931.PubMedCrossRefGoogle Scholar
  123. 123.
    Oliva, A., Farina, J., and Llabres, M. (2000) Development of two high performance liquid chromatographic methods for the analysis and characterisation of insulin and its degradation products in pharmaceutical preparations. J. Chromatogr. B Biomed. Sci. Appl. 749, 25–34.PubMedCrossRefGoogle Scholar
  124. 124.
    Witowska, E., Orlowska, A., Sagan, B., Smoluch, M., and Izdebski, J. (2001) Tryptic hydrolysis of hGH-RH(1-29)-NH2 analogues containing Lys or Orn in positions 12 and 21. J. Pept. Sci. 7, 166–172.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • John W. Honour
    • 1
  1. 1.Department of Clinical BiochemistryUniversity College London HospitalsLondonUK

Personalised recommendations