Skip to main content

Generation and Applications of HPV Pseudovirions Using Vaccinia Virus

  • Protocol
Human Papillomaviruses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 119))

  • 1326 Accesses

Summary

This chapter outlines the generation and application of human papillomavirus type 33 (HPV 33) pseudovirions. These pseudovirions are structurally indistinguishable from native virions and are therefore valuable tools for the study of papillomavirus/cell interactions. The method describes (1) the construction of vaccinia viruses recombinant for the major and minor HPV capsid proteins, L1 and L2, respectively, (2) the transfection of Cos7 cells with a marker plasmid replicating to high copy numbers, (3) the expression of L1 and L2 using the vaccinia virus expression system, (4) the extraction, purification, and analysis of HPV-33 pseudovirions, (5) pseudoinfection assays, (6) pre- and post-attachment neutralization of pseudovirions, and (7) the use of inhibitors for study of binding and uptake of pseudovirions. The methods described have been successfully adopted for HPV 16 and 18 and may thus be applied for other HPV types, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Unckell, F., Streeck, R. E., and Sapp, M. (1997) Generation and neutralization of pseudovirions of human papillomavirus type 33. J. Virol. 71, 2934–2939.

    PubMed  CAS  Google Scholar 

  2. Stauffer, Y., Raj, K., Masternak, K., and Beard, P. (1998) Infectious human papillomavirus type 18 pseudovirions. J. Mol. Biol. 283, 529–536.

    Article  PubMed  CAS  Google Scholar 

  3. Krauzewicz, N., Stokrova, J., Jenkins, C., Elliott, M., Higgins, C. F., and Griffin, B. E. (2000) Virus-like gene transfer into cells mediated by polyoma virus pseudocapsids. Gene Ther. 7, 2122–2131.

    Article  PubMed  CAS  Google Scholar 

  4. McMurray, H. R., Nguyen, D., Westbrook, T. F., and McAnce, D. J. (2001) Biology of human papillomaviruses. Int. J. Exp. Pathol. 82, 15–33.

    Article  PubMed  CAS  Google Scholar 

  5. Howley, P. M. (1996) In Fields Virology Vol. 2, (Fields, B. N., Knipe, D. M., Howley P. M., et al., eds.), Lippincott-Raven Publishers, Philadelphia, pp. 2045–2076.

    Google Scholar 

  6. Touze, A. and Coursaget, P. (1998) In vitro gene transfer using human papillomavirus-like particles. Nucl. Acids Res. 26, 1317–1323.

    Article  PubMed  CAS  Google Scholar 

  7. Kawana, K., Yoshikawa, H., Taketani, Y., Yoshiike, K., and Kanda, T. (1998) In vitro construction of pseudovirions of human papillomavirus type 16: incorporation of plasmid DNA into reassembled L1/L2 capsids. J. Virol. 72, 10,298–10,300.

    PubMed  CAS  Google Scholar 

  8. Müller, M., Gissmann, L., Cristiano, R. J., et al. (1995) Papillomavirus capsid binding and uptake by cells from different tissues and species. J. Virol. 69, 948–954.

    PubMed  Google Scholar 

  9. Yeager, M. D., Aste-Amezaga, M., Brown, D. R., et al. (2000) Neutralization of human papillomavirus (HPV) pseudovirions: a novel and efficient approach to detect and characterize HPV neutralizing antibodies. Virology 278, 570–577.

    Article  PubMed  CAS  Google Scholar 

  10. Fligge, C., Schäfer, F., Selinka, H. C., Sapp, C., and Sapp, M. (2001) DNA-induced structural changes in the papillomavirus capsid. J. Virol. 75, 7727–7731.

    Article  PubMed  CAS  Google Scholar 

  11. Schäfer, F., Florin, L., and Sapp, M. (2002) DNA binding of L1 is required for human papillomavirus morphogenesis in vivo. Virology 295, 172–181.

    Article  PubMed  Google Scholar 

  12. Moss, B., Elroy-Stein, O., Mizukami, T., Alexander, W. A., and Fuerst, T. R. (1990) New mammalian expression vectors. Nature 348, 91–92.

    Article  PubMed  CAS  Google Scholar 

  13. Beaudenon, S., Kremsdorf, D., Croissant, O., Jablonska, S., Wain-Hobson, S., and Orth, G. (1986) A novel type of human papillomavirus associated with genital neoplasias. Nature 321, 246–249.

    Article  PubMed  CAS  Google Scholar 

  14. Giroglou, T., Sapp, M., Lane, C., et al. (2001) Immunological analyses of human papillomavirus capsids. Vaccine 19, 1783–1793.

    Article  PubMed  CAS  Google Scholar 

  15. Sapp, M., Kraus, U., Volpers, C., Snijders, P. J., Walboomers, J. M., and Streeck, R. E. (1994) Analysis of type-restricted and cross-reactive epitopes on virus-like particles of human papillomavirus type 33 and in infected tissues using monoclonal antibodies to the major capsid protein. J. Gen. Virol. 75, 3375–3383.

    Article  PubMed  CAS  Google Scholar 

  16. Volpers, C., Sapp, M., Snijders, P. J., Walboomers, J. M., and Streeck, R. E. (1995) Conformational and linear epitopes on virus-like particles of human papillomavirus type 33 identified by monoclonal antibodies to the minor capsid protein L2. J. Gen. Virol. 76, 2661–2667.

    Article  PubMed  CAS  Google Scholar 

  17. Fuerst, T. R., Niles, E. G., Studier, F. W., and Moss, B. (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83, 8122–8126.

    Article  PubMed  CAS  Google Scholar 

  18. Zhao, K. N., Sun, X. Y., Frazer, I. H., and Zhou, J. (1998) DNA packaging by L1 and L2 capsid proteins of bovine papillomavirus type 1. Virology 243, 482–491.

    Article  PubMed  CAS  Google Scholar 

  19. Buck, C. B., Pastrana, D. V., Lowy, D. R., and Schiller, J. T. (2004) Efficient intracellular assembl of papillomaviral vectors. J. Virol. 78, 751–757.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Selinka, H. C., Giroglou, T., Nowak, T., Christensen, N. D., and Sapp, M. (2003) Further evidence that papillomavirus particles exist in two distinct conformations. J. Virol. 77, 12,961–12,967.

    Article  PubMed  CAS  Google Scholar 

  21. Giroglou, T., Florin, L., Schäfer, F., Streeck, R. E., and Sapp, M. (2001) Human papillomavirus infection requires cell surface heparan sulfate. J. Virol. 75, 1565–1570.

    Article  PubMed  CAS  Google Scholar 

  22. Shafti-Keramat, S., Handisurya, A., Kriehuber, E., Meneguzzi, G., Slupetzky, K., and Kirnbauer, R. (2003) Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J. Virol. 77, 13,125–13,135.

    Article  PubMed  CAS  Google Scholar 

  23. Combita, A. L., Touze, A., Bousarghin, L., Sizaret, P. Y., Munoz, N., and Coursaget, P. (2001) Gene transfer using human papillomavirus pseudovirions varies according to virus genotype and requires cell surface heparan sulfate. FEMS Microbiol. Lett. 204, 183–188.

    Article  PubMed  CAS  Google Scholar 

  24. Selinka, H. C., Giroglou, T., and Sapp, M. (2002) Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 299, 279–287.

    Article  PubMed  CAS  Google Scholar 

  25. Wiklund, L., Sokolowski, M., Carlsson, A., Rush, M., and Schwartz, S. (2002) Inhibition of translation by UAUUUAU and UAUUUUUAU motifs of the AU-rich RNA instability element in the HPV-1 late 3′ untranslated region. J. Biol. Chem. 277, 40,462–40,471.

    Article  PubMed  CAS  Google Scholar 

  26. Oberg, D., Collier, B., Zhao, X., and Schwartz, S. (2003) Mutational inactivation of two distinct negative RNA elements in the human papillomavirus type 16 L2 coding region induces production of high levels of L2 in human cells. J. Virol. 77, 11,674–11,684.

    Article  PubMed  Google Scholar 

  27. Zhou, J., Liu, W. J., Peng, S. W., Sun, X. Y., and Frazer, I. (1999) Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J. Virol. 73, 4972–4982.

    PubMed  CAS  Google Scholar 

  28. Leder, C., Kleinschmidt, J. A., Wiethe, C., and Müller, M. (2001) Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J. Virol. 75, 9201–9209.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Sapp, M., Selinka, HC. (2005). Generation and Applications of HPV Pseudovirions Using Vaccinia Virus. In: Davy, C., Doorbar, J. (eds) Human Papillomaviruses. Methods in Molecular Medicine, vol 119. Humana Press. https://doi.org/10.1385/1-59259-982-6:463

Download citation

  • DOI: https://doi.org/10.1385/1-59259-982-6:463

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-373-2

  • Online ISBN: 978-1-59259-982-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics