Skip to main content

Codon Optimization of Papillomavirus Genes

  • Protocol
  • 1262 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 119))

Summary

Early and late genes of human and animal papillomaviruses show a codon composition seemingly unfavorable for expression in mammalian cells. It remains unclear how the viruses manage to achieve high levels of late gene expression during the viral life cycle. One possible solution could be that the availability of certain t-RNAs changes with progressing stages of cellular differentiation. Previous studies have demonstrated that modification of codon usage of papillomavirus late (L1 and L2) and early genes (E7) can overcome poor expression of these proteins both in transient and in stable expression systems. This was shown not only for human but also for plant cells. Two strategies can be employed to alter codon usage: elimination of only those codons that are rarely used in a particular expression system, or exchange of all possible codons by the ones most frequently used. Currently, there are two protocols for codon modification—a template-less polymerase chain reaction (PCR)-based protocol, in which very long overlapping oligodeoxynucleotides are used in an overlap-extension reaction, or a ligase chain reaction, in which shorter oligodeoxynucleotides are fused together after an annealing procedure. Both methods are presented and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Carlsson, A. and Schwartz, S. (2000) Inhibitory activity of the human papillomavirus type 1 AU-rich element correlates inversely with the levels of the elav-like HuR protein in the cell cytoplasm. Arch. Virol. 145, 491–503.

    Article  PubMed  CAS  Google Scholar 

  2. Kennedy, I. M., Haddow, J. K., and Clements, J. B. (1990) Analysis of human papillomavirus type 16 late mRNA 3,Ä processing signals in vitro and in vivo. J. Virol. 64, 1825–1829.

    PubMed  CAS  Google Scholar 

  3. Kennedy, I. M., Haddow, J. K., and Clements, J. B. (1991) A negative regulatory element in the human papillomavirus type 16 genome acts at the level of late mRNA stability. J. Virol. 65, 2093–2097.

    PubMed  CAS  Google Scholar 

  4. Rollman, E., Arnheim, L., Collier, B., et al. (2004) HPV-16 L1 genes with inactivated negative RNA elements induce potent immune responses. Virology 322, 182–189.

    Article  PubMed  CAS  Google Scholar 

  5. Schwartz, S. (2000) Regulation of human papillomavirus late gene expression. Ups. J. Med. Sci. 105, 171–192.

    PubMed  CAS  Google Scholar 

  6. Sokolowski, M., Tan, W., Jellne, M., and Schwartz, S. (1998) mRNA instability elements in the human papillomavirus type 16 L2 coding region. J. Virol. 72, 1504–1515.

    PubMed  CAS  Google Scholar 

  7. Sokolowski, M., Zhao, C., Tan, W., and Schwartz, S. (1997) AU-rich mRNA instability elements on human papillomavirus type 1 late mRNAs and c-fos mRNAs interact with the same cellular factors. Oncogene 15, 2303–2319.

    Article  PubMed  CAS  Google Scholar 

  8. Day, P. M., Roden, R. B., Lowy, D. R., and Schiller, J. T. (1998) The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J. Virol. 72, 142–150.

    PubMed  CAS  Google Scholar 

  9. Zhou, J., Stenzel, D. J., Sun, X. Y., and Frazer, I. H. (1993) Synthesis and assembly of infectious bovine papillomavirus particles in vitro. J. Gen. Virol. 74(Pt 4), 763–768.

    Article  PubMed  CAS  Google Scholar 

  10. Andre, S., Seed, B., Eberle, J., Schraut, W., Bultmann, A., and Haas, J. (1998) Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J. Virol. 72, 1497–1503.

    PubMed  CAS  Google Scholar 

  11. Uchijima, M., Yoshida, A., Nagata, T., and Koide, Y. (1998) Optimization of codon usage of plasmid DNA vaccine is required for the effective MHC class I-restricted T cell responses against an intracellular bacterium. J. Immunol. 161, 5594–5599.

    PubMed  CAS  Google Scholar 

  12. Yang, T. T., Cheng, L., and Kain, S. R. (1996) Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 24, 4592–4593.

    Article  PubMed  CAS  Google Scholar 

  13. Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J., and Muzyczka, N. (1996) A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654.

    PubMed  CAS  Google Scholar 

  14. Nakamura, Y., Gojobori, T., and Ikemura, T. (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28, 292.

    Article  PubMed  CAS  Google Scholar 

  15. Gu, W., Li, M., Zhao, W. M., et al. (2004) tRNASer(CGA) differentially regulates expression of wild-type and codon-modified papillomavirus L1 genes. Nucleic Acids Res. 32, 4448–4461.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou, J., Liu, W. J., Peng, S. W., Sun, X. Y., and Frazer, I. (1999) Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J. Virol. 73, 4972–4982.

    PubMed  CAS  Google Scholar 

  17. Biemelt, S., Sonnewald, U., Galmbacher, P., Willmitzer, L., and Müller, M. (2003) Production of human papillomavirus type 16 virus-like particles in transgenic plants. J. Virol. 77, 9211–9220.

    Article  PubMed  CAS  Google Scholar 

  18. Buck, C. B., Pastrana, D. V., Lowy, D. R., and Schiller, J. T. (2004) Efficient intracellular assembly of papillomaviral vectors. J. Virol. 78, 751–757.

    Article  PubMed  CAS  Google Scholar 

  19. Cid-Arregui, A., Juarez, V., and zur Hausen, H. (2003) A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies. J. Virol. 77, 4928–4937.

    Article  PubMed  CAS  Google Scholar 

  20. Leder, C., Kleinschmidt, J. A., Wiethe, C., and Müller, M. (2001) Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J. Virol. 75, 9201–9209.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, W. J., Gao, F., Zhao, K. N., et al. (2002) Codon modified human papillomavirus type 16 E7 DNA vaccine enhances cytotoxic T-lymphocyte induction and anti-tumour activity. Virology 301, 43–52.

    Article  PubMed  CAS  Google Scholar 

  22. Mossadegh, N., Gissmann, L., Müller, M., Zentgraf, H., Alonso, A., and Tomakidi, P. (2004) Codon optimization of the human papillomavirus 11 (HPV 11) L1 gene leads to increased gene expression and formation of virus-like particles in mammalian epithelial cells. Virology 326, 57–66.

    Article  PubMed  CAS  Google Scholar 

  23. Görnemann, J., Hofmann, T. G., Will, H., and Müller, M. (2002) Interaction of human papillomavirus type 16 L2 with cellular proteins: identification of novel nuclear body-associated proteins. Virology 303, 69–78.

    Article  PubMed  Google Scholar 

  24. Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947–950.

    Article  PubMed  CAS  Google Scholar 

  25. Jayaraman, K., Fingar, S. A., Shah, J., and Fyles, J. (1991) Polymerase chain reaction-mediated gene synthesis: synthesis of a gene coding for isozyme c of horseradish peroxidase. Proc. Natl. Acad. Sci. USA 88, 4084–4088.

    Article  PubMed  CAS  Google Scholar 

  26. Au, L. C., Yang, F. Y., Yang, W. J., Lo, S. H., and Kao, C. F. (1998) Gene synthesis by a LCR-based approach: high-level production of leptin-L54 using synthetic gene in Escherichia coli. Biochem. Biophys. Res. Commun. 248, 200–203.

    Article  PubMed  CAS  Google Scholar 

  27. Khorana, H. G. (1979) Total synthesis of a gene. Science 203, 614–625.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Müller, M. (2005). Codon Optimization of Papillomavirus Genes. In: Davy, C., Doorbar, J. (eds) Human Papillomaviruses. Methods in Molecular Medicine, vol 119. Humana Press. https://doi.org/10.1385/1-59259-982-6:433

Download citation

  • DOI: https://doi.org/10.1385/1-59259-982-6:433

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-373-2

  • Online ISBN: 978-1-59259-982-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics