Skip to main content

Biochemical Assays for the Characterization of DNA Helicases

  • Protocol
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 314))

Abstract

Helicases are ubiquitous enzymes that disrupt complementary strands of duplex nucleic acid in a reaction dependent on nucleoside-5′-triphosphate hydrolysis. Helicases are implicated in the metabolism of DNA structures that are generated during replication, recombination, and DNA repair. Furthermore, an increasing number of helicases have been linked to genomic instability and human disease. With the growing interest in helicase mechanism and function, we have set out to describe some basic protocols for biochemical characterization of DNA helicases. Protocols for measuring ATP hydrolysis, DNA binding, and catalytic unwinding activity of DNA helicases are provided. Application of these procedures should enable the researcher to address fundamental questions regarding the biochemical properties of a given helicase, which would serve as a platform for further investigation of its molecular and cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singleton, M. R. and Wigley, D. B. (2003) Multiple roles for ATP hydrolysis in nucleic acid modifying enzymes. EMBO J. 22, 4579–4583.

    Article  PubMed  CAS  Google Scholar 

  2. Caruthers, J. M. and McKay, D. B. (2002) Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133.

    Article  PubMed  CAS  Google Scholar 

  3. Delagoutte, E. and von Hippel, P. H. (2002) Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: Structures and properties of isolated helicases. Q. Rev. Biophys. 35, 431–478.

    Article  PubMed  CAS  Google Scholar 

  4. Hall, M. C. and Matson, S. W. (1999) Helicase motifs: the engine that powers DNA unwinding. Mol. Microbiol. 34, 867–877.

    Article  PubMed  CAS  Google Scholar 

  5. Patel, S. S. and Picha, K. M. (2000) Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697.

    Article  PubMed  CAS  Google Scholar 

  6. Bachrati, C. Z. and Hickson, I. D. (2003) RecQ helicases: suppressors of tumorigenesis and premature ageing. Biochem. J. 374, 577–606.

    Article  PubMed  CAS  Google Scholar 

  7. Brosh, R. M. Jr. and Bohr, V. A. (2002) Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. Exp. Gerontol. 37, 491–506.

    Article  PubMed  CAS  Google Scholar 

  8. Opresko, P. L., Cheng, W. H., and Bohr, V. A. (2004) At the junction of RecQ helicase biochemistry and human disease. J. Biol. Chem. 279, 18,099–18,102. E-Pub 15023996.

    Article  PubMed  CAS  Google Scholar 

  9. Matson, S. W. (1986) Escherichia coli helicase II (urvD gene product) translocates unidirectionally in a 3′ to 5′ direction. J. Biol. Chem. 261, 10,169–10,175.

    PubMed  CAS  Google Scholar 

  10. Matson, S. W., Bean, D. W., and George, J. W. (1994) DNA helicases: enzymes with essential roles in all aspects of DNA metabolism. Bioessays 16, 13–22.

    Article  PubMed  CAS  Google Scholar 

  11. Dillingham, M. S., Wigley, D. B., and Webb, M. R. (2002) Direct measurement of single-stranded DNA translocation by PcrA helicase using the fluorescent base analogue 2-aminopurine. Biochemistry 41, 643–651.

    Article  PubMed  CAS  Google Scholar 

  12. Dillingham, M. S., Wigley, D. B., and Webb, M. R. (2000) Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39, 205–212.

    Article  PubMed  CAS  Google Scholar 

  13. Ahnert, P. and Patel, S. S. (1997) Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5′-and 3′-tails of the forked DNA substrate. J. Biol. Chem. 272, 32,267–32,273.

    Article  PubMed  CAS  Google Scholar 

  14. Brosh, R. M. Jr., Waheed, J., and Sommers, J. A. (2002) Biochemical characterization of the DNA substrate specificity of Werner syndrome helicase. J. Biol. Chem. 277, 23,236–23,245.

    Article  PubMed  CAS  Google Scholar 

  15. Kaplan, D. L. (2000) The 3′-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J. Mol. Biol. 301, 285–299.

    Article  PubMed  CAS  Google Scholar 

  16. Sun, H., Karow, J. K., Hickson, I. D., and Maizels, N. (1998) The Bloom’s syndrome helicase unwinds G4 DNA. J. Biol. Chem. 273, 27,587–27,592.

    Article  PubMed  CAS  Google Scholar 

  17. Morris, P. D. and Raney, K. D. (1999) DNA helicases displace streptavidin from biotin-labeled oligonucleotides. Biochemistry 38, 5164–5171.

    Article  PubMed  CAS  Google Scholar 

  18. Morris, P. D., Byrd, A. K., Tackett, A. J., et al. (2002) Hepatitis C virus NS3 and Simian virus 40 T antigen helicases displace streptavidin from 5′-biotinylated oligonucleotides but not from 3′-biotinylated oligonucleotides: evidence for directional bias in translocation on single-stranded DNA. Biochemistry 41, 2372–2378.

    Article  PubMed  CAS  Google Scholar 

  19. Brosh, R. M. Jr., Orren, D. K., Nehlin, J. O., et al. (1999) Functional and physical interaction between WRN helicase and human Replication Protein A. J. Biol. Chem. 274, 18,341–18,350.

    Article  PubMed  CAS  Google Scholar 

  20. Shen, J. C., Gray, M. D., Oshima, J., and Loeb, L. A. (1998) Characterization of Werner syndrome protein DNA helicase activity: directionality, substrate dependence and stimulation by Replication Protein A. Nucleic. Acids. Res. 26, 2879–2885.

    Article  PubMed  CAS  Google Scholar 

  21. Brosh, R. M. Jr., Li, J. L., Kenny, M. K., et al. (2000) Replication Protein A physically interacts with the Bloom’s syndrome protein and stimulates its helicase activity. J. Biol. Chem. 275, 23,500–23,508.

    Article  PubMed  CAS  Google Scholar 

  22. Cui, S., Klima, R., Ochem, A., Arosio, D., Falaschi, A., and Vindigni, A. (2003) Characterization of the DNA-unwinding activity of human RECQ1, a helicase specifically stimulated by human Replication Protein A. J. Biol. Chem. 278, 1424–1432.

    Article  PubMed  CAS  Google Scholar 

  23. Kikuma, T., Ohtsu, M., Utsugi, T., et al. (2004) Dbp9p, a member of DEAD box protein family, has DNA helicase activity. J. Biol. Chem. E-Pub. 15028736.

    Google Scholar 

  24. Brosh, R. M. Jr., Majumdar, A., Desai, S., Hickson, I. D., Bohr, V. A., and Seidman, M. M. (2001) Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases. J. Biol. Chem. 276, 3024–3030.

    Article  PubMed  CAS  Google Scholar 

  25. Villani, G. and Tanguy, L. G. (2000) Interactions of DNA helicases with damaged DNA: possible biological consequences. J. Biol. Chem. 275, 33,185–33,188.

    Article  PubMed  CAS  Google Scholar 

  26. Naegeli, H., Bardwell, L., and Friedberg, E. C. (1993) Inhibition of Rad3 DNA helicase activity by DNA adducts and abasic sites: implications for the role of a DNA helicase in damage-specific incision of DNA. Biochemistry 32, 613–621.

    Article  PubMed  CAS  Google Scholar 

  27. Driscoll, H. C., Matson, S. W., Sayer, J. M., Kroth, H., Jerina, D. M., and Brosh, R. M. Jr. (2003) Inhibition of Werner syndrome helicase activity by benzo[c]-phenanthrene diol epoxide dA adducts in DNA is both strand-and stereoisomer-dependent. J. Biol. Chem. 278, 41,126–41,135.

    Article  PubMed  CAS  Google Scholar 

  28. Harmon, F. G. and Kowalczykowski, S. C. (2001) Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase. J. Biol. Chem. 276, 232–243.

    Article  PubMed  CAS  Google Scholar 

  29. Bjornson, K. P., Amaratunga, M., Moore, K. J., and Lohman, T. M. (1994) Single-turnover kinetics of helicase-catalyzed DNA unwinding monitored continuously by fluorescence energy transfer. Biochemistry 33, 14,306–14,316.

    Article  PubMed  CAS  Google Scholar 

  30. Ali, J. A., Maluf, N. K., and Lohman, T. M. (1999) An oligomeric form of E. coli UvrD is required for optimal helicase activity. J. Mol. Biol. 293, 815–834.

    Article  PubMed  CAS  Google Scholar 

  31. Lucius, A. L., Vindigni, A., Gregorian, R., et al. (2002) DNA unwinding step-size of E. coli RecBCD helicase determined from single turnover chemical quenched-flow kinetic studies. J. Mol. Biol. 324, 409–428.

    Article  PubMed  CAS  Google Scholar 

  32. Nanduri, B., Byrd, A. K., Eoff, R. L., Tackett, A. J., and Raney, K. D. (2002) Presteady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor. Proc. Natl. Acad. Sci. USA 99, 14,722–14,727.

    Article  PubMed  CAS  Google Scholar 

  33. Mohaghegh, P., Karow, J. K., Brosh, R. M. Jr., Bohr, V. A., and Hickson, I. D. (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic. Acids. Res. 29, 2843–2849.

    Article  PubMed  CAS  Google Scholar 

  34. Sharma, S., Otterlei, M., Sommers, J. A., et al. (2004) WRN Helicase and FEN-1 form a complex upon replication arrest and together process branch-migrating DNA structures associated with the replication fork. Mol. Biol. Cell 15, 734–750.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Because of page length limitations, we were not able to reference a number of papers in the literature from laboratories that developed various biochemical techniques for the study of DNA helicases. We wish to thank our colleagues in The Laboratory of Molecular Gerontology, National Institute on Aging, NIH for helpful discussion.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Brosh, R.M., Sharma, S. (2006). Biochemical Assays for the Characterization of DNA Helicases. In: Henderson, D.S. (eds) DNA Repair Protocols. Methods in Molecular Biology™, vol 314. Humana Press. https://doi.org/10.1385/1-59259-973-7:397

Download citation

  • DOI: https://doi.org/10.1385/1-59259-973-7:397

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-513-2

  • Online ISBN: 978-1-59259-973-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics