Skip to main content

Electrophoretic Mobility Shift Assays to Study Protein Binding to Damaged DNA

  • Protocol
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 314))

Abstract

The electrophoretic mobility shift assay (EMSA) can be used to identify proteins that bind specifically to damaged DNA. EMSAs detect the presence of key DNA repair proteins, such as ultraviolet (UV)-damaged DNA binding protein, which is involved in nucleotide excision repair, and Ku and DNA-PKcs, which are involved in double-strand break repair. This chapter describes EMSA protocols for detecting proteins that bind to UV-damaged DNA, cisplatin-damaged DNA, and DNA ends. The chapter also describes variations of the EMSA that can be used to obtain additional information about these important proteins. The variations include the reverse EMSA, which can detect binding of 35S-labeled protein to damaged DNA, and the antibody supershift assay, which can define the composition of protein-DNA complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garner, M. M. and Revzin, A. (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to the components of the E. coli lactose operon regulatory system. Nucleic Acids Res. 9, 3047–3059.

    Article  PubMed  CAS  Google Scholar 

  2. Fried, M. and Crothers, D. M. (1981) Equilibrium and kinetics of lac repressoroperator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505–6525.

    Article  PubMed  CAS  Google Scholar 

  3. Tang, J. and Chu, G. (2002) Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA Repair 1, 601–616.

    Article  PubMed  CAS  Google Scholar 

  4. Smider, V. and Chu, G. (1997) The end-joining reaction in V(D)J recombination. Semin. Immunol. 9, 189–197.

    Article  PubMed  CAS  Google Scholar 

  5. Chu, G. and Chang, E. (1988) Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242, 564–567.

    Article  PubMed  CAS  Google Scholar 

  6. Singh, H., Sen, R., Baltimore, D., and Sharp, P. (1986) A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319, 154–158.

    Article  PubMed  CAS  Google Scholar 

  7. Hwang, B. J. and Chu, G. (1993) Purification and characterization of a protein that binds to damaged DNA. Biochemistry 32, 1657–1666.

    Article  PubMed  CAS  Google Scholar 

  8. Hwang, B. J., Liao, J., and Chu, G. (1996) Isolation of a cDNA encoding a UVdamaged DNA binding factor defective in xeroderma pigmentosum group E cells. Mutat. Res. 362, 105–117.

    PubMed  Google Scholar 

  9. Chu, G. and Chang, E. (1990) Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA. Proc. Natl. Acad. Sci. USA 87, 3324–3327.

    Article  PubMed  CAS  Google Scholar 

  10. Keeney, S., Eker, A. P. M., Brody, T., Vermeulen, W., Bootsma, D. and Hoeijmakers, J. H. J. (1994) Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein. Proc. Natl. Acad. Sci. USA 91, 4053–4056.

    Article  PubMed  CAS  Google Scholar 

  11. Tang, J., Hwang, B. J., Ford, J. M., Hanawalt, P. C., and Chu, G. (2000) Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol. Cell 5, 737–744.

    Article  PubMed  CAS  Google Scholar 

  12. Rathmell, W. K. and Chu, G. (1994) A DNA end-binding factor involved in double-strand break repair and V(D)J recombination. Mol. Cell. Biol. 14, 4741–4748.

    PubMed  CAS  Google Scholar 

  13. Rathmell, W. K. and Chu, G. (1994) Involvement of the Ku autoantigen in the cellular response to DNA double-strand breaks. Proc. Natl. Acad. Sci. USA 91, 7623–7627.

    Article  PubMed  CAS  Google Scholar 

  14. Smider, V., Rathmell, W. K., Lieber, M., and Chu, G. (1994) Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku cDNA. Science 266, 288–291.

    Article  PubMed  CAS  Google Scholar 

  15. Taccioli, G. E., Gottlieb, T. M., Blunt, T., et al. (1994) Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265, 1442–1445.

    Article  PubMed  CAS  Google Scholar 

  16. Hammarsten, O. and Chu, G. (1998) DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc. Natl. Acad. Sci. USA 95, 525–530.

    Article  PubMed  CAS  Google Scholar 

  17. Patterson, M. and Chu, G. (1989) Evidence that xeroderma pigmentosum cells from complementation group E are deficient in a homolog of yeast photolyase. Mol. Cell. Biol. 9, 5105–5112.

    PubMed  CAS  Google Scholar 

  18. Fox, M., Feldman, B., and Chu, G. (1994) A novel role for DNA photolyase: binding to drug-induced DNA damage is associated with enhanced cytotoxicity in yeast. Mol. Cell. Biol. 14, 8071–8077.

    PubMed  CAS  Google Scholar 

  19. Jiricny, J. (1994) Colon cancer and DNA repair: have mismatches met their match? Trends Genetics 10, 164–168.

    Article  CAS  Google Scholar 

  20. Donahue, B.A., Augot, M., Bellon, S. F., et al. (1990) Characterization of a DNA damage-recognition protein from mammalian cells that binds specifically to intrastrand d(GpG) and d(ApG) DNA adducts of the anticancer drug cisplatin. Biochemistry 29, 5872–5880.

    Article  PubMed  CAS  Google Scholar 

  21. Toney, J., Donahue, B. A., Kellett, P. J., Bruhn, S. L., Essigmann, J. M., Lippard, S. J. (1989) Isolation of cDNAs encoding a human protein that binds selectively to DNA modified by the anticancer drug cis-diamminedichloroplatinum(II). Proc. Natl. Acad. Sci. USA 86, 8328–8332.

    Article  PubMed  CAS  Google Scholar 

  22. Brown, S., Kellet, P., and Lippard, S. (1993) Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin. Science 261, 603–605.

    Article  PubMed  CAS  Google Scholar 

  23. Sambrook, J., Fritsch, E., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  24. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  25. Payne, A. and Chu, G. (1994) Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage. Mutat. Res. 310, 89–102.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Smider, V., Hwang, B.J., Chu, G. (2006). Electrophoretic Mobility Shift Assays to Study Protein Binding to Damaged DNA. In: Henderson, D.S. (eds) DNA Repair Protocols. Methods in Molecular Biology™, vol 314. Humana Press. https://doi.org/10.1385/1-59259-973-7:323

Download citation

  • DOI: https://doi.org/10.1385/1-59259-973-7:323

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-513-2

  • Online ISBN: 978-1-59259-973-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics