Advertisement

Measuring the Formation and Repair of DNA Damage by Ligation-Mediated PCR

  • Gerd P. Pfeifer
Part of the Methods in Molecular Biology™ book series (MIMB, volume 314)

Abstract

There is a need to analyze the formation of DNA lesions in specific sequence contexts. The formation and repair of DNA damage at specific locations in the genome is modulated by the DNA sequence, by DNA methylation patterns, by the transcriptional status of the locus, and by chromatin proteins associated with the DNA. The only method currently available to allow a precise sequence mapping of DNA lesions in mammalian cells is the ligation-mediated polymerase chain reaction (LM-PCR). I describe the technical details of LM-PCR as exemplified by the mapping of DNA damage products in ultraviolet (UV) light-irradiated cells.

Key Words

DNA adducts DNA repair ligation-mediated PCR (6–4) photoproduct pyrimidine dimer ultraviolet (UV) light 

Notes

Acknowledgments

We thank A. Sancar for kindly providing E. coli photolyase. This work has been supported by a grant from the National Institute of Environmental Health Sciences (ES06070) to G.P.P.

References

  1. 1.
    Tornaletti, S. and Pfeifer, G. P. (1996) UV damage and repair mechanisms in mammalian cells. BioEssays 18, 221–228.PubMedCrossRefGoogle Scholar
  2. 2.
    Pfeifer, G. P. (1997) Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Photochem. Photobiol. 65, 270–283.PubMedCrossRefGoogle Scholar
  3. 3.
    Yoon, J.-H., Lee, C.-S., O’Connor, T., Yasui, A., and Pfeifer, G. P. (2000) The DNA damage spectrum produced by simulated sunlight. J. Mol. Biol. 299, 681–693. [Erratum: Yoon et al. (2000) J. Mol. Biol. 302, 1019–1020.]PubMedCrossRefGoogle Scholar
  4. 4.
    You, Y. H., Lee, D. H., Yoon, J. H., Nakajima, S., Yasui, A., and Pfeifer, G. P. (2001) Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J. Biol. Chem. 276, 44,688–44,694.PubMedCrossRefGoogle Scholar
  5. 5.
    Mitchell, D. L. and Nairn, R. S. (1989) The biology of the (6–4) photoproduct. Photochem. Photobiol. 49, 805–819.PubMedCrossRefGoogle Scholar
  6. 6.
    Mitchell, D. L., Brash, D. E., and Nairn, R. S. (1990) Rapid repair kinetics of pyrimidine (6–4) pyrimidone photoproducts in human cells are due to excision repair rather than conformational change. Nucleic Acids Res. 18, 963–971.PubMedCrossRefGoogle Scholar
  7. 7.
    Mellon, I., Spivak, G., and Hanawalt, P. C. (1987) Selective removal of transcription blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249.PubMedCrossRefGoogle Scholar
  8. 8.
    Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C. (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369.PubMedCrossRefGoogle Scholar
  9. 9.
    Cleaver, J. E. (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218, 652–656.PubMedCrossRefGoogle Scholar
  10. 10.
    Hanawalt, P. C. and Sarasin, A. (1986) Cancer-prone hereditary diseases with DNA processing abnormalities. Trends Genet. 2, 124–129.CrossRefGoogle Scholar
  11. 11.
    Dammann, R. and Pfeifer, G. P. (1997) Lack of gene-and strand-specific DNA repair in RNA polymerase III transcribed human tRNA genes. Mol. Cell. Biol. 17, 219–229.PubMedGoogle Scholar
  12. 12.
    Gao, S., Drouin, R., and Holmquist, G. P. (1994) DNA repair rates mapped along the human PGK-1 gene at nucleotide resolution. Science 263, 1438–1440.PubMedCrossRefGoogle Scholar
  13. 13.
    Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1991) In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6–4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proc. Natl. Acad. Sci. USA 88, 1374–1378.PubMedCrossRefGoogle Scholar
  14. 14.
    Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1992) Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol. Cell. Biol. 12, 1798–1804.PubMedGoogle Scholar
  15. 15.
    Tornaletti, S. and Pfeifer, G. P. (1994) Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science 263, 1436–1438.PubMedCrossRefGoogle Scholar
  16. 16.
    Tornaletti, S. and Pfeifer, G. P. (1996) Ligation-mediated PCR for analysis of UV damage, in Technologies for Detection of DNA Damage and Mutations, (Pfeifer, G. P., ed.). Plenum, New York, NY, pp. 199–209.Google Scholar
  17. 17.
    Törmänen, V. T. and Pfeifer, G. P. (1992) Mapping of UV photoproducts within ras protooncogenes in UV-irradiated cells: correlation with mutations in human skin cancer. Oncogene 7, 1729–1736.PubMedGoogle Scholar
  18. 18.
    Tu, Y., Tornaletti, S., and Pfeifer, G. P. (1996) DNA repair domains within a human gene: selective repair of sequences near the transcription start site. EMBO J. 15, 675–683.PubMedGoogle Scholar
  19. 19.
    Tommasi, S., Oxyzoglou, A. B., and Pfeifer, G. P. (2000) Cell cycle-independent removal of UV-induced pyrimidine dimers from the promoter and the transcription initiation domain of the human CDC2 gene. Nucleic Acids Res. 28, 3991–3998.PubMedCrossRefGoogle Scholar
  20. 20.
    Hu, W., Feng, Z., Chasin, L. A., and Tang, M. S. (2002) Transcription-coupled and transcription-independent repair of cyclobutane pyrimidine dimers in the dihydrofolate reductase gene. J. Biol. Chem. 277, 38,305–38,310.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhu, Q., Wani, M. A., El-Mahdy, M., and Wani, A. A. (2000) Decreased DNA repair efficiency by loss or disruption of p53 function preferentially affects removal of cyclobutane pyrimidine dimers from non-transcribed strand and slow repair sites in transcribed strand. J. Biol. Chem. 275, 11,492–11,497.PubMedCrossRefGoogle Scholar
  22. 22.
    Tu, Y., Bates, S., and Pfeifer, G. P. (1997) Sequence-specific and domain-specific DNA repair in xeroderma pigmentosum and Cockayne syndrome cells. J. Biol. Chem. 272, 20,747–20,755.PubMedCrossRefGoogle Scholar
  23. 23.
    Lippke, J. A., Gordon, L. K., Brash, D. E., and Haseltine, W. A. (1981) Distribution of UV light-induced damage in a defined sequence of human DNA: detection of alkaline-sensitive lesions at pyrimidine nucleoside-cytidine sequences. Proc. Natl. Acad. Sci. USA 78, 3388–3392.PubMedCrossRefGoogle Scholar
  24. 24.
    Gordon, L. K. and Haseltine, W. A. (1980) Comparison of the cleavage or pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus UV-specific endonucleases. J. Biol. Chem. 255, 12,047–12,050.PubMedGoogle Scholar
  25. 25.
    Radany, E. H. and Friedberg, E. C. (1980) A pyrimidine dimer-DNA glycosylase activity associated with the v gene product of bacterophage T4. Nature 286, 182–185.PubMedCrossRefGoogle Scholar
  26. 26.
    Ye, N., Holmquist, G. P., and O’Connor, T. R. (1998) Heterogeneous repair of Nmethylpurines at the nucleotide level in normal human cells. J. Mol. Biol. 284, 269–285.PubMedCrossRefGoogle Scholar
  27. 27.
    Rodriguez, H., Drouin, R., Holmquist, G. P., et al. (1995) Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated polymerase chain reaction. J. Biol. Chem. 270, 17633–17640.PubMedCrossRefGoogle Scholar
  28. 28.
    Cloutier, J. F., Drouin, R., Weinfeld, M., O’Connor, T. R., and Castonguay, A. (2001) Characterization and mapping of DNA damage induced by reactive metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at nucleotide resolution in human genomic DNA. J. Mol. Biol. 313, 539–557.PubMedCrossRefGoogle Scholar
  29. 29.
    Cloutier, J. F., Castonguay, A., O’Connor, T. R., and Drouin, R. (2001) Alkylating agent and chromatin structure determine sequence context-dependent formation of alkylpurines. J. Mol. Biol. 306, 169–188.PubMedCrossRefGoogle Scholar
  30. 30.
    Akman, S. A., O’Connor, T. R., and Rodriguez, H. (2000) Mapping oxidative DNA damage and mechanisms of repair. Ann. NY Acad. Sci. 899, 88–102.PubMedCrossRefGoogle Scholar
  31. 31.
    Denissenko, M. F., Pao, A., Tang, M., and Pfeifer, G. P. (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 274, 430–432.PubMedCrossRefGoogle Scholar
  32. 32.
    Denissenko, M. F., Koudriakova, T. B., Smith, L., O’Connor, T. R., Riggs, A. D., and Pfeifer, G. P. (1998) The p53 codon 249 mutational hotspot in hepatocellular carcinoma is not related to selective formation or persistence of aflatoxin B1 adducts. Oncogene 17, 3007–3014.PubMedCrossRefGoogle Scholar
  33. 33.
    Denissenko, M. F., Pao, A., Pfeifer, G. P., and Tang, M. (1998) Slow repair of bulky DNA adducts along the nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers. Oncogene 16, 1241–1247.PubMedCrossRefGoogle Scholar
  34. 34.
    Smith, L. E., Denissenko, M. F., Bennett, W. P., Li, H., Amin, S., Tang, M., and Pfeifer, G. P. (2000) Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J. Natl. Cancer Inst. 92, 803–811.PubMedCrossRefGoogle Scholar
  35. 35.
    Hu, W., Feng, Z., and Tang, M. S. (2003) Preferential carcinogen-DNA adduct formation at codons 12 and 14 in the human K-ras gene and their possible mechanisms. Biochemistry 42, 10,012–10,023.PubMedCrossRefGoogle Scholar
  36. 36.
    Pfeifer, G. P. and Riggs, A. D. (1993) Genomic sequencing. Methods Mol. Biol. 23, 169–181.PubMedGoogle Scholar
  37. 37.
    Mueller, P. R. and Wold, B. (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246, 780–786.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Gerd P. Pfeifer
    • 1
  1. 1.Division of BiologyBeckman Research Institute of the City of HopeDuarte

Personalised recommendations