Skip to main content

Quantitative Angiogenesis in Breast Cancer

  • Protocol
Breast Cancer Research Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 120))

  • 1286 Accesses

Summary

Over the last few years, great advances in our understanding in tumor neovascularization have emerged, with several new mechanisms of neovascularization being proposed. Solid tumors establish a vasculature through angiogenesis, vasculogenesis, vascular remodeling, co-option, and possibly also intussusception and vascular mimicry. Quantitative measurements of the tumor vasculature have generally measured the number of microvessels, highlighted using immunohistochemistry and antibodies to factor VIII-related antigen at high power over a defined field area. The generation of more sensitive and specific markers—in particular antibodies to CD34—together with the use of a Chalkley eyepiece graticule have improved the objectivity of the assessment of tumor vascularity. The protocol for this is discussed, with several variations such as vascular grade, microvessel density, and the alterations required for the assessment of vascularity in in situ breast disease. Also outlined are potential other measures of the angiogenic activity of breast tumors including the use of angiogenic factors and their receptors, endothelial cell proliferation, vessel maturation index, cell adhesion molecules, proteolytic enzymes, and the recently identified hypoxic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman, J. (1990) What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4–6.

    Article  PubMed  CAS  Google Scholar 

  2. Pezzella, F., Pastorin, O. U., Tagliabue, E., et al. (1996) Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am. J. Pathol. 151, 1417–1423.

    Google Scholar 

  3. Holash, J., Maisonpierre, P. C., Compton, D., et al. (1999) Vessel co-option, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998.

    Article  PubMed  CAS  Google Scholar 

  4. Holash, J., Wiegand, S. J., and Yancopoulos, G. D. (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18, 5356–5362.

    Article  PubMed  CAS  Google Scholar 

  5. Vermeulen, P. B., Colpaert, C., Salgado, R., et al. (2001) Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J. Pathol. 195, 336–342.

    Article  PubMed  CAS  Google Scholar 

  6. Asahara, T., Masuda, H., Takahashi, T., et al. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228.

    Article  PubMed  CAS  Google Scholar 

  7. Gunsilius, E., Duba, H. C., Petzer, A. L., et al. (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355, 1688–1691.

    Article  PubMed  CAS  Google Scholar 

  8. Rafii, S. (2000) Circulating endothelial precursors: mystery, reality, and promise. J. Clin. Invest. 105, 17–19.

    Article  PubMed  CAS  Google Scholar 

  9. Asahara, T., Takahashi, T., Masuda, H., et al. (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18, 3964–3972.

    Article  PubMed  CAS  Google Scholar 

  10. Patan, S., Munn, L. L., and Jain, R. K. (1996) Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc. Res. 51, 260–272.

    Article  PubMed  CAS  Google Scholar 

  11. Patan, S. (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J. Neurooncol. 50, 1–15.

    Article  PubMed  CAS  Google Scholar 

  12. Brem, S., Cotran, R., and Folkman, J. (1972) Tumor angiogenesis: a quantitative method for histological grading. J. Natl. Cancer Inst. 48, 347–356.

    PubMed  CAS  Google Scholar 

  13. Porschen, R., Classen, S., Piontek, M., and Borchard, F. (1994) Vascularization of carcinomas of the esophagus and its correlation with tumor proliferation. Cancer Res. 54, 587–591.

    PubMed  CAS  Google Scholar 

  14. Mlynek, M., van Beunigen, D., Leder, L-D., and Streffer, C. (1985) Measurement of the grade of vascularisation in histological tumor tissue sections. Br. J. Cancer 52, 945–948.

    Article  PubMed  CAS  Google Scholar 

  15. Svrivastava, A., Laidler, P., Davies, R., Horgan, K., and Hughes, L. (1988) The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0-mm thick) skin melanoma. Am. J. Pathol. 133, 419–423.

    Google Scholar 

  16. Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8.

    Article  PubMed  CAS  Google Scholar 

  17. Shpitz, B., Bomstein, Y., Sternberg, A., et al. (2000) Angiogenesis, p53, and c-erbB-2 immunoreactivity and clinicopathological features in male breast cancer. J. Surg. Oncol. 75, 252–257.

    Article  PubMed  CAS  Google Scholar 

  18. Fox, S. B., Gasparini, G., and Harris, A. L. (2001) Angiogenesis: pathological, prognostic, and growth-factor pathways and their link to trial design and anticancer drugs. Lancet Oncol. 2, 278–289.

    Article  PubMed  CAS  Google Scholar 

  19. Van Hoef, M. E., Knox, W. F., Dhesi, S. S., Howell, A., and Schor, A. M. (1993) Assessment of tumor vascularity as a prognostic factor in lymph node negative invasive breast cancer. Eur. J. Cancer 29A, 1141–1145.

    PubMed  Google Scholar 

  20. Hall, N. R., Fish, D. E., Hunt, N., Goldin, R. D., Guillou, P. J., and Monson, J. R. (1992) Is the relationship between angiogenesis and metastasis in breast cancer real? Surg. Oncol. 1, 223–229.

    Article  PubMed  CAS  Google Scholar 

  21. Sightler, H., Borowsky, A., Dupont, W., Page, D., and Jensen, R. (1994) Evaluation of tumor angiogenesis as a prognostic marker in breast cancer. Lab. Invest. 70, 22A (abstract).

    Google Scholar 

  22. Siitonen, S., Haapasalo, H., Rantala, I., Helin, H., and Isola, J. (1995) Comparison of different immunohistochemical methods in the assessment of angiogenesis: lack of prognostic value in a group of 77 selected node-negative breast carcinomas. Mod. Pathol. 8, 745–752.

    PubMed  CAS  Google Scholar 

  23. Goulding, H., Abdul, R. N., Robertson, J. F., et al. (1995) Assessment of angiogenesis in breast carcinoma: an important factor in prognosis? Hum. Pathol. 26, 1196–1200.

    Article  PubMed  CAS  Google Scholar 

  24. Costello, P., McCann, A., Carney, D. N., and Dervan, P. A. (1995) Prognostic significance of microvessel density in lymph node negative breast carcinoma. Hum. Pathol. 26, 1181–1184.

    Article  PubMed  CAS  Google Scholar 

  25. Morphopoulos, G., Pearson, M., Ryder, W. D., Howell, A., and Harris, M. (1996) Tumor angiogenesis as a prognostic marker in infiltrating lobular carcinoma of the breast. J. Pathol. 180, 44–49.

    Article  PubMed  CAS  Google Scholar 

  26. Tan, P., Cady, B., and Wanner, M. (1997) et al. The cell cycle inhibitor p27 is an independent prognostic marker in small (T1a,b) invasive breast carcinomas. Cancer Res. 57, 1259–1263.

    PubMed  CAS  Google Scholar 

  27. Clahsen, P. C., van de Velde, C. J., Duval, C., et al. (1998) p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with node-negative early breast cancer. J. Clin. Oncol. 16, 470–479.

    PubMed  CAS  Google Scholar 

  28. Fridman, V., Humblet, C., Bonjean, K., and Boniver, J. (2000) Assessment of tumor angiogenesis in invasive breast carcinomas: absence of correlation with prognosis and pathological factors. Virchows Arch. 437, 611–617.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, J. S., Kim, H. S., Jung, J. J., Kim, Y. B., Park, C. S., and Lee, M. C. (2001) Correlation between angiogenesis, apoptosis and cell proliferation in invasive ductal carcinoma of the breast and their relation to tumor behavior. Anal. Quant. Cytol. Histol. 23, 161–168.

    PubMed  CAS  Google Scholar 

  30. Vincent-Salomon, A., Carton, M., Zafrani, B., et al. (2001) Long-term outcome of small size invasive breast carcinomas independent from angiogenesis in a series of 685 cases. Cancer 92, 249–256.

    Article  PubMed  CAS  Google Scholar 

  31. Paweletz, N. and Knierim, M. (1989) Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol. 9, 197–242.

    Article  PubMed  CAS  Google Scholar 

  32. Blood, C. H. and Zetter, B. R. (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim. Biophys. Acta 1032, 89–118.

    PubMed  CAS  Google Scholar 

  33. Brown, L. F., Berse, B., Jackman, R. W., et al. (1995) Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum. Pathol. 26, 86–91.

    Article  PubMed  CAS  Google Scholar 

  34. Moghaddam, A. and Bicknell, R. (1992) Expression of platelet-derived endothelial cell growth factor in Escherichia coli and confirmation of its thymidine phosphorylase activity. Biochemistry 31, 12141–12146.

    Article  PubMed  CAS  Google Scholar 

  35. Anandappa, S. Y., Winstanley, J. H., Leinster, S., Green, B., Rudland, P. S., and Barraclough, R. (1994) Comparative expression of fibroblast growth factor mRNAs in benign and malignant breast disease. Br. J. Cancer 69, 772–776.

    Article  PubMed  CAS  Google Scholar 

  36. Relf, M., LeJeune, S., Scott, P. A., et al. (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57, 963–969.

    PubMed  CAS  Google Scholar 

  37. Garver, R. J., Radford, D. M., Donis, K. H., Wick, M. R., and Milner, P. G. (1994) Midkine and pleiotrophin expression in normal and malignant breast tissue. Cancer 74, 1584–1590.

    Article  PubMed  Google Scholar 

  38. Smith, K., Fox, S. B., Whitehouse, R., et al. (1999) Upregulation of basic fibroblast growth factor in breast carcinoma and its relationship to vascular density, oestrogen receptor, epidermal growth factor receptor and survival. Ann. Oncol. 10, 707–713.

    Article  PubMed  CAS  Google Scholar 

  39. Wong, S. Y., Purdie, A. T., and Han, P. (1992) Thrombospondin and other possible related matrix proteins in malignant and benign breast disease. An immunohistochemical study. Am. J. Pathol. 140, 1473–1482.

    PubMed  CAS  Google Scholar 

  40. Visscher, D. W., DeMattia, F., Ottosen, S., Sarkar, F. H., and Crissman, J. D. (1995) Biologic and clinical significance of basic fibroblast growth factor immunostaining in breast carcinoma. Mod. Pathol. 8, 665–670.

    PubMed  CAS  Google Scholar 

  41. Toi, M., Kondo, S., Suzuki, H., Yamamoto, Y., et al. (1996) Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77, 1101–1106.

    Article  PubMed  CAS  Google Scholar 

  42. Lantzsch, T., Hefler, L., Krause, U., et al. (2002) The correlation between immunohistochemically-detected markers of angiogenesis and serum vascular endothelial growth factor in patients with breast cancer. Anticancer Res. 22, 1925–1928.

    PubMed  CAS  Google Scholar 

  43. Valkovic, T., Dobrila, F., Melato, M., Sasso, F., Rizzardi, C., and Jonjic, N. (2002) Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch. 440, 583–588.

    Article  PubMed  CAS  Google Scholar 

  44. Linderholm, B., Tavelin, B., Grankvist, K., Henriksson, and R. Vascular (1998) Endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J. Clin. Oncol. 16, 3121–3128.

    PubMed  CAS  Google Scholar 

  45. Gasparini, G., Toi, M., Gion, M., et al. (1997) Prognostic-significance of vascular endothelial growth-factor protein in node-negative breast-carcinoma. J. Natl. Cancer Inst. 89, 139–147.

    Article  PubMed  CAS  Google Scholar 

  46. Obermair, A., Kucera, E., Mayerhofer, K., et al. (1997) Vascular endothelial growth factor (VEGF) in human breast cancer: correlation with disease-free survival. Int. J. Cancer 74, 455–458.

    Article  PubMed  CAS  Google Scholar 

  47. Manders, P., Beex, L. V., Tjan-Heijnen, V. C., et al. (2002) The prognostic value of vascular endothelial growth factor in 574 node-negative breast cancer patients who did not receive adjuvant systemic therapy. Br. J. Cancer 87, 772–778.

    Article  PubMed  CAS  Google Scholar 

  48. Eppenberger, U., Kueng, W., Schlaeppi, J. M., et al. (1998) Markers of tumor angiogenesis and proteolysis independently define high-and low-risk subsets of node-negative breast cancer patients. J. Clin. Oncol. 16, 3129–3136.

    PubMed  CAS  Google Scholar 

  49. Coradini, D., Boracchi, P., Daidone, M. G., et al. (2001) Contribution of vascular endothelial growth factor to the Nottingham prognostic index in node-negative breast cancer. Br. J. Cancer 85, 795–797.

    Article  PubMed  CAS  Google Scholar 

  50. Toi, M., Bando, H., Ogawa, T., Muta, M., Hornig, C., and Weich, H. A. (2002) Significance of vascular endothelial growth factor (VEGF)/soluble VEGF receptor-1 relationship in breast cancer. Int. J. Cancer 98, 14–18.

    Article  PubMed  CAS  Google Scholar 

  51. Salven, P., Lymboussaki, A., Heikkila, P., et al. (1998) Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am. J. Pathol. 153, 103–108.

    Article  PubMed  CAS  Google Scholar 

  52. Gunningham, S., Currie, M., Cheng, H., et al. (2000) The short form of the alternatively spliced flt-4 but not its ligand VEGF-C is related to lymph node metastasis in human breast cancers. Clin. Cancer Res. 6, 4278–4286.

    PubMed  CAS  Google Scholar 

  53. Gunningham, S., Currie, M., Cheng, H., et al. (2000) VEGF-B expression in human breast cancers is associated with positive lymph node status. J. Pathol. 193, 325–332.

    Article  Google Scholar 

  54. Kinoshita, J., Kitamura, K., Kabashima, A., Saeki, H., Tanaka, S., and Sugimachi, K. (2001) Clinical significance of vascular endothelial growth factor-C (VEGF-C) in breast cancer. Breast Cancer Res. Treat. 66, 159–164.

    Article  PubMed  CAS  Google Scholar 

  55. Brekken, R. A., Huang, X., King, S. W., and Thorpe, P. E. (1998) Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res. 58, 1952–1959.

    PubMed  CAS  Google Scholar 

  56. Giatromanolaki, A., Sivridis, E., Brekken, R., et al. (2001) The angiogenic “vascular endothelial growth factor/flk-1(KDR) receptor” pathway in patients with endometrial carcinoma: prognostic and therapeutic implications. Cancer 92, 2569–2577.

    Article  PubMed  CAS  Google Scholar 

  57. Fox, S. B., Westwood, M., Moghaddam, A., et al. (1996) The angiogenic factor platelet-derived endothelial cell growth factor/thymidine phosphorylase is up-regulated in breast cancer epithelium and endothelium. Br. J. Cancer 73, 275–280.

    Article  PubMed  CAS  Google Scholar 

  58. Toi, M., Hoshina, S., Taniguchi, T., Yamamoto, Y., Ishitsuka, H., Tominaga, T. (1995) Expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase in human breast cancer. Int. J. Cancer 64, 79–82.

    Article  PubMed  CAS  Google Scholar 

  59. Toi, M., Ueno, T., Matsumoto, H., et al. (1999) Significance of thymidine phosphorylase as a marker of protumor monocytes in breast cancer. Clin. Cancer Res. 5, 1131–1137.

    PubMed  CAS  Google Scholar 

  60. Yang, Q., Barbareschi, M., Mori, I., et al. (2002) Prognostic value of thymidine phosphorylase expression in breast carcinoma. Int. J. Cancer 97, 512–517.

    Article  PubMed  CAS  Google Scholar 

  61. Kanzaki, A., Takebayashi, Y., Bando, H., et al. (2002) Expression of uridine and thymidine phosphorylase genes in human breast carcinoma. Int. J. Cancer 97, 631–635.

    Article  PubMed  CAS  Google Scholar 

  62. Nagaoka, H., Iino, Y., Takei, H., and Morishita, Y. (1998) Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression in macrophages correlates with tumor angiogenesis and prognosis in invasive breast cancer. Int. J. Oncol. 13, 449–454.

    PubMed  CAS  Google Scholar 

  63. Dittadi, R., Meo, S., Fabris, F., et al. (2001) Validation of blood collection procedures for the determination of circulating vascular endothelial growth factor (VEGF) in different blood compartments. Int. J. Biol. Markers 16, 87–96.

    PubMed  CAS  Google Scholar 

  64. Toi, M., Yamamoto, Y., Inada, K., et al. (1995) Vascular endothelial growth factor and platelet-derived endothelial growth factor are frequently co-expressed in highly vascularized breast cancer. Clin. Cancer Res. 1, 961–964.

    PubMed  CAS  Google Scholar 

  65. O’Brien, T., Fox, S. B., Dickinson, A., et al. (1996) Expression of the angiogenic factor thymidine phosphorylase/platelet derived endothelial cell growth factor in primary bladder cancers. Cancer Res. 56, 4799–4804.

    CAS  Google Scholar 

  66. O’Brien, T. S., Smith, K., Cranston, D., Fuggle, S., Bicknell, R., and Harris, A. L. (1995) Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br. J. Urol. 76, 311–314.

    Article  CAS  Google Scholar 

  67. Adams, J., Carder, P. J., Downey, S., et al. (2000) Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res. 60, 2898–2905.

    PubMed  CAS  Google Scholar 

  68. Freeman, A., Morris, L. S., Mills, A. D., et al. (1999) Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin.Cancer Res. 5, 2121–2132..

    PubMed  CAS  Google Scholar 

  69. Stoeber, K., Swinn, R., Prevost, A. T., et al. (2002) Diagnosis of genito-urinary tract cancer by detection of minichromosome maintenance 5 protein in urine sediments. J. Natl. Cancer Inst. 94, 1071–1079.

    Article  PubMed  CAS  Google Scholar 

  70. Eberhard, A., Kahlert, S., Goede, V., Hemmerlein, B., Plate, K. H., and Augustin, H. G. (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60, 1388–1393.

    PubMed  CAS  Google Scholar 

  71. Kakolyris, S., Fox, S. B., Koukourakis, M., et al. (2000) Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39. Br. J. Cancer 82, 844–851.

    Article  PubMed  CAS  Google Scholar 

  72. Schadendorf, D., Heidel, J., Gawlik, C., Suter, L., and Czarnetzki, B. M. (1995) Association with clinical outcome of expression of VLA-4 in primary cutaneous malignant melanoma as well as P-selectin and E-selectin on intratumoral vessels. J. Natl. Cancer Inst. 87, 366–371.

    Article  PubMed  CAS  Google Scholar 

  73. Kageshita, T., Hamby, C. V., Hirai, S., Kimura, T., Ono, T., and Ferrone, S. (2000) Alpha(v)beta3 expression on blood vessels and melanoma cells in primary lesions: differential association with tumor progression and clinical prognosis. Cancer Immunol. Immunother. 49, 314–318.

    Article  PubMed  CAS  Google Scholar 

  74. Kageshita, T., Yoshii, A., Kimura, T., et al. (1993) Clinical relevance of ICAM-1 expression in prmary lesions and serum of patients with malignant melanoma. Cancer Res. 53, 4927–4932.

    PubMed  CAS  Google Scholar 

  75. Banks, R. E., Gearing, A. J., Hemingway, I. K., Norfolk, D. R., Perren, T. J., and Selby, P. J. (1993) Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br. J. Cancer 68, 122–124.

    Article  PubMed  CAS  Google Scholar 

  76. Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., and Cheresh, D. A. (1995) Antiintegrin b3av blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  77. Gasparini, G., Brooks, P. C., Biganzoli, E., et al. (1998) Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin. Cancer Res. 4, 2625–2634.

    PubMed  CAS  Google Scholar 

  78. Pepper, M. S. (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 21, 1104–1117.

    Article  PubMed  CAS  Google Scholar 

  79. John, A. and Tuszynski, G. (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res. 7, 14–23.

    Article  PubMed  CAS  Google Scholar 

  80. Haas, T. L. and Madri, J. A. (1999) Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc. Med. 9, 70–77.

    Article  PubMed  CAS  Google Scholar 

  81. Lochter, A. and Bissell, M. J. (1999) An odyssey from breast to bone: multi-step control of mammary metastases and osteolysis by matrix metalloproteinases. APMIS 107, 128–136.

    Article  PubMed  CAS  Google Scholar 

  82. Parfyonova, Y. V., Plekhanova, O. S., Tkachuk, V. A. (2002) Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry (Mosc) 67, 119–134.

    Article  CAS  Google Scholar 

  83. Nielsen, B. S., Sehested, M., Kjeldsen, L., Borregaard, N., Rygaard, J., and Dano, K. (1997) Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab. Invest. 77, 345–355.

    PubMed  CAS  Google Scholar 

  84. Fox, S. B., Taylor, M., Grondahl-Hansen, J., Kakolyris, S., Gatter, K., and Harris, A. (2001) Plasminogen activator inhibitor-1 as a measure of vascular remodelling in breast cancer. J. Pathol. 195, 236–243.

    Article  PubMed  CAS  Google Scholar 

  85. Grøndahl-Hansen, J., Christensen, I. J., Rosenquist, C., et al. (1993) High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res. 53, 2513–2521.

    PubMed  Google Scholar 

  86. Grøndahl-Hansen, J., Peters, H. A., J, van Putten, W. L., et al. (1995) Prognostic significance of the receptor for urokinase plasminogen activator in breast cancer. Clin. Cancer Res. 1, 1079–1087.

    PubMed  Google Scholar 

  87. Grøndahl-Hansen, J., Hilsenbeck, S. G., Christensen, I. J., Clark, G. M., Osborne, C. K., Brünner, N. (1997) Prognostic significance of PAI-1 and uPA in cytosolic extracts obtained from node-positive breast cancer patients. Breast Cancer Res. Treat. 43, 153–163.

    Article  PubMed  Google Scholar 

  88. Janicke, F., Pache, L., Schmitt, M., et al. (1994) Both the cytosols and detergent extracts of breast cancer tissues are suited to evaluate the prognostic impact of the urokinase-type plasminogen activator and its inhibitor, plasminogen activator inhibitor type 1. Cancer Res. 54, 2527–2530.

    PubMed  CAS  Google Scholar 

  89. Foekens, J. A., Look, M. P., Peters, H. A., van Putten, W. L., Portengen, H., Klijn, J. G. (1995) Urokinase-type plasminogen activator and its inhibitor PAI-1: predictors of poor response to tamoxifen therapy in recurrent breast cancer. J. Natl. Cancer Inst. 87, 751–756.

    Article  PubMed  CAS  Google Scholar 

  90. Duffy, M. J. (2002) Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin. Chem. 48, 1194–1197.

    PubMed  CAS  Google Scholar 

  91. Harbeck, N., Schmitt, M., Kates, R. E., et al. (2002) Clinical utility of urokinasetype plasminogen activator and plasminogen activator inhibitor-1 determination in primary breast cancer tissue for individualized therapy concepts. Clin. Breast Cancer 3, 196–200.

    Article  PubMed  CAS  Google Scholar 

  92. Warren, B. (1979) The vascular morphology of tumors, in Tumor Blood Circulation (Peterson, H., ed.) CRC, Boca Raton, FL, pp. 1–47.

    Google Scholar 

  93. Warren, B., Greenblatt, M., and Kommineni, V. (1972) Tumor angiogenesis: ultrastructure of endothelial cells in mitosis. Br. J. Exp. Path. 53, 216–224.

    CAS  Google Scholar 

  94. Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F., and Dvorak, A. M. (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237, 97–132.

    Article  PubMed  CAS  Google Scholar 

  95. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465.

    PubMed  CAS  Google Scholar 

  96. Talks, K. L., Turley, H., Gatter, K. C., et al. (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157, 411–421.

    Article  PubMed  CAS  Google Scholar 

  97. Wykoff, C. C., Beasley, N. J., Watson, P. H., et al. (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 60, 7075–7083.

    PubMed  CAS  Google Scholar 

  98. Loncaster, J. A., Harris, A. L., Davidson, S. E., et al. (2001) Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res. 61, 6394–6399.

    PubMed  CAS  Google Scholar 

  99. Qin, C., Wilson, C., Blancher, C., Taylor, M., Safe, S., and Harris, A. L. (2001) Association of ARNT splice variants with estrogen receptor-negative breast cancer, poor induction of vascular endothelial growth factor under hypoxia, and poor prognosis. Clin Cancer Res. 7, 818–823.

    PubMed  CAS  Google Scholar 

  100. Schindl, M., Schoppmann, S. F., Samonigg, H., et al. (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin. Cancer Res. 8, 1831–1837.

    PubMed  CAS  Google Scholar 

  101. Hasebe, T., Sasaki, S., Imoto, S., Mukai, K., Yokose, T., and Ochiai, A. (2002) Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: a prospective observational study. Mod. Pathol. 15, 502–516.

    Article  PubMed  Google Scholar 

  102. Hasebe, T., Tsuda, H., Hirohashi, S., et al. (1996) Fibrotic focus in invasive ductal carcinoma: an indicator of high tumor aggressiveness. Jpn. J. Cancer Res. 87, 385–394.

    Article  PubMed  CAS  Google Scholar 

  103. Jitsuiki, Y., Hasebe, T., Tsuda, H., et al. (1999) Optimizing microvessel counts according to tumor zone in invasive ductal carcinoma of the breast. Mod. Pathol. 12, 492–498.

    PubMed  CAS  Google Scholar 

  104. Colpaert, C., Vermeulen, P., Fox, S. B., Harris, A. L., Dirix, L., and van Marck, E. (2003) The presence of a fibrotic focus in invasive breast carcinoma correlates with expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Br. Cancer Res. Treat. 81, 137–147.

    Article  CAS  Google Scholar 

  105. Fox, S. B. and Harris, A. (1997) Markers of tumor angiogenesis: clinical applications in prognosis and anti-angiogenic therapy. Invest. New Drugs 15, 15–28.

    Article  PubMed  CAS  Google Scholar 

  106. Barbareschi, M., Weidner, N., Gasparini, G., et al. (1995) Microvessel quantitation in breast carcinomas. Appl. Immunochem. 3, 75–84.

    Google Scholar 

  107. Vermeulen, P. B., Gasparini, G., Fox, S. B., et al. (1996) Quantification of angiogenesis in solid human tumors: an international consensus on the methodology and criteria of evaluation. Eur. J. Cancer 32A, 2474–2484.

    Article  PubMed  CAS  Google Scholar 

  108. Chalkley, H. (1943) Method for the quantative morphological analysis of tissues. J. Nat. Cancer Inst. 4, 47–53.

    Google Scholar 

  109. Engels, K., Fox, S. B., Whitehouse, R. M., Gatter, K. C., and Harris, A. L. (1997) Up-regulation of thymidine phosphorylase expression is associated with a discrete pattern of angiogenesis in ductal carcinomas in situ of the breast. J. Pathol. 182, 414–420.

    Article  PubMed  CAS  Google Scholar 

  110. Guidi, A., Fischer, L., Harris, J., and Schnitt, S. (1994) Microvessel density and distribution in ductal carcinoma in situ of the breast. J. Natl. Cancer Inst. 86, 614–619.

    Article  PubMed  CAS  Google Scholar 

  111. Ottinetti, A. and Sapino, A. (1988) Morphometric evaluation of microvessels surrounding hyperplastic and neoplastic mammary lesions. Breast Cancer Res. Treat. 11, 241–248.

    Article  PubMed  CAS  Google Scholar 

  112. Lee, A. H., Happerfield, L. C., Bobrow, L. G., and Millis, R. R. (1997) Angiogenesis and inflammation in ductal carcinoma in situ of the breast. J. Pathol. 181, 200–206.

    Article  PubMed  CAS  Google Scholar 

  113. Heffelfinger, S., Yassin, R., Miller, M., and Lower, E. (1996) Vascularity of proliferative breast disease and carcinoma in situ correlates with histological features. Clin. Cancer Res. 2, 1873–1878.

    PubMed  CAS  Google Scholar 

  114. Sood, A. K., Seftor, E. A., Fletcher, M. S., et al. (2001) Molecular determinants of ovarian cancer plasticity. Am. J. Pathol. 158, 1279–1288.

    Article  PubMed  CAS  Google Scholar 

  115. Folberg, R., Hendrix, M. J., and Maniotis, A. J. (2000) Vasculogenic mimicry and tumor angiogenesis. Am. J. Pathol. 156, 361–381.

    Article  PubMed  CAS  Google Scholar 

  116. McDonald, D. M., Munn, L., and Jain, R. K. (2000) Vasculogenic mimicry: how convincing, how novel, and how significant? Am. J. Pathol. 156, 383–388.

    Article  PubMed  CAS  Google Scholar 

  117. Chang, Y. S., di Tomaso, E., McDonald, D. M., Jones, R., Jain, R. K., and Munn, L. L. (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc. Natl. Acad. Sci. U. S. A. 97, 14608–14613.

    Article  PubMed  CAS  Google Scholar 

  118. Shirakawa, K., Wakasugi, H., Heike, Y., et al. (2002) Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int. J. Cancer 99, 821–828.

    Article  PubMed  CAS  Google Scholar 

  119. Shirakawa, K., Tsuda, H., Heike, Y., et al. (2001) Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res. 61, 445–451.

    PubMed  CAS  Google Scholar 

  120. Kuzu, I., Bicknell, R., Fletcher, C. D., and Gatter, K. C. (1993) Expression of adhesion molecules on the endothelium of normal tissue vessels and vascular tumors. Lab. Invest. 69, 322–328.

    PubMed  CAS  Google Scholar 

  121. Wakui, S., Furusato, M., Itoh, T., et al. (1992) Tumor angiogenesis in prostatic carcinoma with and without bone marrow metastases: a morphometric study. J. Pathol. 168, 257–262.

    Article  PubMed  CAS  Google Scholar 

  122. Carnochan, P., Briggs, J. C., Westbury, G., and Davies, A. J. (1991) The vascularity of cutaneous melanoma: a quantitative histological study of lesions 0.85–1.25 mm in thickness. Br. J. Cancer 64, 102–107.

    Article  PubMed  CAS  Google Scholar 

  123. Svrivastava, A., Laidler, P., Hughes, L., Woodcock, J., and Shedden, E. J. (1986) Neovascularization in human cutaneous melanoma: a quantitative morphological and Doppler ultrasound study. Eur. J. Cancer Oncol. 22, 1205–1209.

    Article  Google Scholar 

  124. Vesalainen, S., Lipponen, P., Talja, M., Alhava, E., and Syrjanen, K. (1994) Tumor vascularity and basement membrane structure as prognostic factors in T1-2M0 prostatic adenocarcinoma. Anticancer Res. 14, 709–714.

    PubMed  CAS  Google Scholar 

  125. Visscher, D., Smilanetz, S., Drozdowicz, S., and Wykes, S. (1993) Prognostic significance of image morphometric microvessel enumeration in breast carcinoma. Anal. Quant. Cytol. 15, 88–92.

    CAS  Google Scholar 

  126. Fox, S. B. and Harris, A. (2000) Angiogenesis as a diagnostic and therapeutic target, in Diseases of the Breast, 2nd edition (Harris, J., Lippman, M., Morrow, M., Osborn, M., eds.). Lippincott Williams and Wilkins, Philadelphia, PA, pp. 799–809.

    Google Scholar 

  127. Vermeulen, P. B., Gasparini, G., Fox, S. B., et al. (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumors. Eur. J. Cancer 38, 1564–1579.

    Article  PubMed  CAS  Google Scholar 

  128. Engels, K., Fox, S. B., Whitehouse, R. M., Gatter, K. C., and Harris, A. L. (1997) Distinct angiogenic patterns are associated with high-grade in situ ductal carcinomas of the breast. J. Pathol. 181, 207–212.

    Article  PubMed  CAS  Google Scholar 

  129. Weidner, N., Folkman, J., Pozza, F., et al. (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl. Cancer Inst. 84, 1875–1887.

    Article  PubMed  CAS  Google Scholar 

  130. Barnhill, R. L., Fandrey, K., Levy, M. A., Mihm, M. J., and Hyman, B. (1992) Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab. Invest. 67, 331–337.

    PubMed  CAS  Google Scholar 

  131. Sahin, A., Sneige, N., Singletary, E., and Ayala, A. (1992) Tumor angiogenesis detected by Factor-VIII immunostaining in node-negative breast carcinoma (NNBC): a possible predictor of distant metastasis. Mod. Pathol. 5 17A (abstract).

    Google Scholar 

  132. Kumar, S., Ghellal, A., Li, C., et al. (1999) Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res., 59, 856–861.

    PubMed  CAS  Google Scholar 

  133. Heimann, R., Ferguson, D., Powers, C., et al. (1996) Angiogenesis as a predictor of long-term survival for patients with node-negative breast cancer. J. Natl Cancer Inst. 88, 1764–1769.

    Article  PubMed  CAS  Google Scholar 

  134. Ahlgren, J., Risberg, B., Villman, K., and Bergh, J. (2002) Angiogenesis in invasive breast carcinoma—a prospective study of tumor heterogeneity. Eur. J. Cancer 38, 64–69.

    Article  PubMed  CAS  Google Scholar 

  135. Martin, L., Holcombe, C., Green, B., Leinster, S. J., and Winstanley, J. (1997) Is a histological section representative of whole tumor vascularity in breast cancer? Br. J. Cancer 76, 40–43.

    Article  PubMed  CAS  Google Scholar 

  136. de Jong, J. S., van Diest, P. J., and Baak, J. P. (1995) Heterogeneity and reproducibility of microvessel counts in breast cancer. Lab. Invest. 73, 922–926.

    PubMed  Google Scholar 

  137. Horak, E. R., Leek, R., Klenk, N., et al. (1992) Angiogenesis, assessed by platelet/ endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340, 1120–1124.

    Article  PubMed  CAS  Google Scholar 

  138. Fox, S. B., Leek, R. D., Weekes, M. P., Whitehouse, R. M., Gatter, K. C., and Harris, A. L. (1995) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J. Pathol. 177, 275–283.

    Article  PubMed  CAS  Google Scholar 

  139. Axelsson, K., Ljung, B. M., Moore II, D. H., et al. (1995) Tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma. J. Natl. Cancer Inst. 87, 997–1008.

    Article  PubMed  CAS  Google Scholar 

  140. Hansen, S., Grabau, D. A., Rose, C., Bak, M., and Sorensen, F. B. (1998) Angiogenesis in breast cancer: a comparative study of the observer variability of methods for determining microvessel density. Lab. Invest. 78, 1563–1573.

    PubMed  CAS  Google Scholar 

  141. Fox, S. B., Leek, R. D., Smith, K., Hollyer, J., Greenall, M., and Harris, A. L. (1994) Tumor angiogenesis in node-negative breast carcinomas-relationship with epidermal growth factor receptor, estrogen receptor, and survival. Br. Cancer Res. Treat. 29, 109–116.

    Article  CAS  Google Scholar 

  142. Hansen, S., Grabau, D. A., Sorensen, F. B., Bak, M., Vach, W., and Rose, C. (2000) The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clin. Cancer Res. 6, 139–146.

    PubMed  CAS  Google Scholar 

  143. Dickinson, A. J., Fox, S. B., Persad, R. A., Hollyer, J., Sibley, G. N., and Harris, A. L. (1994) Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas. Br. J. Urol. 74, 762–766.

    Article  PubMed  CAS  Google Scholar 

  144. Gasparini, G., Toi, M., Verderio, P., et al. (1998) Prognostic significance of p53, angiogenesis, and other conventional features in operable breast cancer: subanalysis in node-positive and node-negative patients. Int. J. Oncol. 12, 1117–1125.

    PubMed  CAS  Google Scholar 

  145. Bosari, S., Lee, A. K., DeLellis, R. A., Wiley, B. D., Heatley, G. J., and Silverman, M. L. (1992) Microvessel quantitation and prognosis in invasive breast carcinoma. Hum. Pathol. 23, 755–761.

    Article  PubMed  CAS  Google Scholar 

  146. Fox, S. B., Leek, R. D., Bliss, J., et al. (1997) Association of tumor angiogenesis with bone marrow micrometastases in breast cancer patients. J. Natl. Cancer Inst. 89, 1044–1049.

    Article  PubMed  CAS  Google Scholar 

  147. Hansen, S., Grabau, D. A., Sorensen, F. B., Bak, M., Vach, W., and Rose, C. (2000) Vascular grading of angiogenesis: prognostic significance in breast cancer. Br. J. Cancer 82, 339–347.

    Article  PubMed  CAS  Google Scholar 

  148. Burrows, F. J. and Thorpe, P. E. (1994) Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol. Ther. 64, 155–174.

    Article  PubMed  CAS  Google Scholar 

  149. Huang, X., Molema, G., King, S., Watkins, L., Edgington, T. S., and Thorpe, P. E. (1997) Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275, 547–550.

    Article  PubMed  CAS  Google Scholar 

  150. Smolle, J., Soyer, H. P., Hofmann-Wellenhof, Smolle-Juettner, F. M., and Kerl, H. (1989) Vascular archictecture of melanocytic skin tumors. Path. Res. Pract. 185, 740–745.

    Article  PubMed  CAS  Google Scholar 

  151. Cockerell, C. J., Sonnier, G., Kelly, L., and Patel, S. (1994) Comparative analysis of neovascularization in primary cutaneous melanoma and Spitz nevus. Am. J. Dermatopathol. 16, 9–13.

    Article  PubMed  CAS  Google Scholar 

  152. Folberg, R., Rummelt, V., Ginderdeuren, R-V., et al. (1993) The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 100, 1389–1398.

    PubMed  CAS  Google Scholar 

  153. Pezzella, F. (2000) Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Breast Cancer Progression Working Party. Lancet 355, 1787–1788.

    Article  Google Scholar 

  154. Pezzella, F., Dibacco, A., Andreola, S., Nicholson, A. G., Pastorino, U., and Harris, A. L. (1996) Angiogenesis in primary lung-cancer and lung secondaries. Eur. J. Cancer 32, 2494–2500.

    Article  Google Scholar 

  155. Simpson, J., Ahn, C., Battifora, H., and Esteban, J. (1994) Vascular surface area as a prognostic indicator in invasive breast carcinoma. Lab. Invest. 70, 22.

    Google Scholar 

  156. Charpin, C., Devictor, B., Bergeret, D., et al. (1995) CD31 quantitative immunocytochemical assays in breast carcinomas. Correlation with current prognostic factors. Am. J. Clin. Pathol. 103, 443–448.

    PubMed  CAS  Google Scholar 

  157. Belien, J. A., Somi, S., de Jong, J. S., van Diest, P. J., and Baak, J. P. (1999) Fully automated microvessel counting and hot spot selection by image processing of whole tumor sections in invasive breast cancer. J. Clin. Pathol. 52, 184–192.

    Article  PubMed  CAS  Google Scholar 

  158. Arora, R., Joshi, K., Nijhawan, R., Radotra, B. D., and Sharma, S. C. (2002) Angiogenesis as an independent prognostic indicator in node-negative breast cancer. Anal. Quant. Cytol. Histol. 24, 228–233.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Fox, S.B. (2006). Quantitative Angiogenesis in Breast Cancer. In: Brooks, S.A., Harris, A. (eds) Breast Cancer Research Protocols. Methods in Molecular Medicine, vol 120. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-969-9:161

Download citation

  • DOI: https://doi.org/10.1385/1-59259-969-9:161

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-191-2

  • Online ISBN: 978-1-59259-969-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics