Mast Cells pp 91-101 | Cite as

Identification of Mast Cells in the Cellular Response to Myocardial Infarction

  • Nikolaos G. Frangogiannis
  • Mark L. Entman
Part of the Methods in Molecular Biology book series (MIMB, volume 315)


Myocardial infarction is associated with an acute inflammatory response, leading to replacement of injured cardiomyocytes with granulation tissue. Mast cells are actively involved in postinfarction inflammation by releasing histamine and tumor necrosis factor-α, triggering a cytokine cascade. During the proliferative phase of healing, mast cells accumulate in the infarct and may regulate fibrous tissue deposition and angiogenesis by releasing growth factors, angiogenic mediators, and proteases. This chapter describes simple and reliable methods used to identify mast cells in control and infarcted canine hearts. Toluidine blue staining, labeling with conjugated avidin, and tryptase histochemistry are useful in the detection of mast cells in canine tissues. In the healing infarct, mast cells are associated with other cell types that are important for granulation tissue formation. We present immunohistochemical methods identifying monocytes, neutrophils, macrophages, endothelial cells, myofibroblasts, and smooth muscle cells in dog infarcts. These techniques are useful tools for pathological studies in canine models.

Key Words

Mast cell toluidine blue metachromatic FITC-avidin tryptase histochemistry pathology immunohistochemistry endothelial macrophage neutrophil myofibroblast smooth muscle cell wound healing infarct myocardial ischemia 



The authors wish to thank Sharon Malinowski and Connie Mata for editorial assistance with the manuscript. This work was supported by NIH Grant HL-42550, a Grant-in-Aid from the American Heart Association Texas Affiliate, and the DeBakey Heart Center.


  1. 1.
    Patella, V., Marino, I., Arbustini, E., et al. (1998) Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Circulation 97, 971–978.PubMedGoogle Scholar
  2. 2.
    Frangogiannis, N. G., Burns, A. R., Michael, L. H., and Entman, M. L. (1999) Histochemical and morphological characteristics of canine cardiac mast cells. Histochem. J. 31, 221–229.CrossRefPubMedGoogle Scholar
  3. 3.
    Gersch, C., Dewald, O., Zoerlein, M., Michael, L. H., Entman, M. L., and Frangogiannis, N. G. (2002) Mast cells and macrophages in normal C57/BL/6 mice. Histochem. Cell Biol. 118, 41–49.PubMedGoogle Scholar
  4. 4.
    Gordon, J. R. and Galli, S. J. (1990) Mast cells as a source of both preformed and immunologically inducible TNF-alpha/cachectin. Nature 346, 274–276.CrossRefPubMedGoogle Scholar
  5. 5.
    Plaut, M., Pierce, J. H., Watson, C. J., Hanley-Hyde, J., Nordan, R. P., and Paul, W. E. (1989) Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature 339, 64–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Baghestanian, M., Hofbauer, R., Kiener, H. P., et al. (1997) The c-kit ligand stem cell factor and anti-IgE promote expression of monocyte chemoattractant protein-1 in human lung mast cells. Blood 90, 4438–4449.PubMedGoogle Scholar
  7. 7.
    Rumsaeng, V., Vliagoftis, H., Oh, C. K., and Metcalfe, D. D. (1997) Lymphotactin gene expression in mast cells following Fc(epsilon) receptor I aggregation: modulation by TGF-beta, IL-4, dexamethasone, and cyclosporin A. J. Immunol. 158, 1353–1360.PubMedGoogle Scholar
  8. 8.
    Kaartinen, M., Penttila, A., and Kovanen, P. T. (1996) Mast cells in rupture-prone areas of human coronary atheromas produce and store TNF-alpha. Circulation 94, 2787–2792.PubMedGoogle Scholar
  9. 9.
    Frangogiannis, N. G., Lindsey, M. L., Michael, L. H., et al. (1998) Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98, 699–710.PubMedGoogle Scholar
  10. 10.
    Ito, B. R., Engler, R. L., and del Balzo, U. (1993) Role of cardiac mast cells in complement C5a-induced myocardial ischemia. Am. J. Physiol. 264, H1346–H1354.PubMedGoogle Scholar
  11. 11.
    Linden, J. (1994) Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol. Sci. 15, 298–306.CrossRefPubMedGoogle Scholar
  12. 12.
    Frangogiannis, N. G., Smith, C. W., and Entman, M. L. (2002) The inflammatory response in myocardial infarction. Cardiovasc. Res. 53, 31–47.CrossRefPubMedGoogle Scholar
  13. 13.
    Pennington, D. W., Lopez, A. R., Thomas, P. S., Peck, C., and Gold, W. M. (1992) Dog mastocytoma cells produce transforming growth factor beta 1. J. Clin. Invest. 90, 35–41.CrossRefPubMedGoogle Scholar
  14. 14.
    Qu, Z., Liebler, J. M., Powers, M. R., et al. (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am. J. Pathol. 147, 564–573.PubMedGoogle Scholar
  15. 15.
    Boesiger, J., Tsai, M., Maurer, M., et al. (1998) Mast cells can secrete vascular permeability 3factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of fc epsilon receptor I expression. J. Exp. Med. 188, 1135–1145.CrossRefPubMedGoogle Scholar
  16. 16.
    Shiota, N., Rysa, J., Kovanen, P. T., Ruskoaho, H., Kokkonen, J. O., and Lindstedt, K. A. (2003) A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J. Hypertens. 21, 1935–1944.CrossRefPubMedGoogle Scholar
  17. 17.
    Brower, G. L., Chancey, A. L., Thanigaraj, S., Matsubara, B. B., and Janicki, J. S. (2002) Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am. J. Physiol. Heart Circ. Physiol. 283, H518–H525.PubMedGoogle Scholar
  18. 18.
    Chancey, A. L., Brower, G. L., and Janicki, J. S. (2002) Cardiac mast cell-mediated activation of gelatinase and alteration of ventricular diastolic function. Am. J. Phtysiol. Heart Circ. Physiol. 282, H2152–H2158.Google Scholar
  19. 19.
    Fang, K. C., Wolters, P. J., Steinhoff, M., Bidgol, A., Blount, J. L., and Caughey, G. H. (1999) Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. J. Immunol. 162, 5528–5535.PubMedGoogle Scholar
  20. 20.
    Matsumoto, T., Wada, A., Tsutamoto, T., Ohnishi, M., Isono, T., and Kinoshita, M. (2003) Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure. Circulation 107, 2555–2558.CrossRefPubMedGoogle Scholar
  21. 21.
    Bergstresser, P. R., Tigelaar, R. E., and Tharp, M. D. (1984) Conjugated avidin identifies cutaneous rodent and human mast cells. J. Invest. Dermatol. 83, 214–218.CrossRefPubMedGoogle Scholar
  22. 22.
    Caughey, G. H., Viro, N. F., Calonico, L. D., McDonald, D. M., Lazarus, S. C., and Gold, W. M. (1988) Chymase and tryptase in dog mastocytoma cells: asynchronous expression as revealed by enzyme cytochemical staining. J. Histochem. Cytochem. 36, 1053–1060.PubMedGoogle Scholar
  23. 23.
    Beckstead, J. H. (1994) A simple technique for preservation of fixation-sensitive antigens in paraffin-embedded tissues. J. Histochem. Cytochem. 42, 1127–1134.PubMedGoogle Scholar
  24. 24.
    Zeng, L., Takeya, M., Ling, X., Nagasaki, A., and Takahashi, K. (1996) Interspecies reactivities of anti-human macrophage monoclonal antibodies to various animal species. J. Histochem. Cytochem. 44, 845–853.PubMedGoogle Scholar
  25. 25.
    Hawkins, H. K., Entman, M. L., Zhu, J. Y., et al. (1996) Acute inflammatory reaction after myocardial ischemic injury and reperfusion. Development and use of a neutrophil-specific antibody. Am. J. Pathol. 148, 1957–1969.PubMedGoogle Scholar
  26. 26.
    Enerback, L. (1966) Mast cells in rat gastrointestinal mucosa. I. Effects of fixation. Acta Pathol. Microbiol. Scand. 66, 289–302.PubMedGoogle Scholar
  27. 27.
    Enerback, L. (1966) Mast cells in rat gastrointestinal mucosa. 2. Dye-binding and metachromatic properties. Acta Pathol. Microbiol. Scand. 66, 303–312.PubMedGoogle Scholar
  28. 28.
    Miller, J. S. and Schwartz, L. B. (1989) Human mast cell proteases and mast cell heterogeneity. Curr. Opin. Immunol. 1, 637–642.CrossRefPubMedGoogle Scholar
  29. 29.
    Tharp, M. D., Seelig, L. L., Jr., Tigelaar, R. E., and Bergstresser, P. R. (1985) Conjugated avidin binds to mast cell granules. J. Histochem. Cytochem. 33, 27–32.PubMedGoogle Scholar
  30. 30.
    Frangogiannis, N. G., Mendoza, L. H., Ren, G., et al. (2003) MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am. J. Physiol. Heart Circ. Physiol. 285, H483–H492.PubMedGoogle Scholar
  31. 31.
    Ren, G., Michael, L. H., Entman, M. L., and Frangogiannis, N. G. (2002) Morphological characteristics of the microvasculature in healing myocardial infarcts. J. Histochem. Cytochem. 50, 71–79.PubMedGoogle Scholar
  32. 32.
    Frangogiannis, N. G., Shimoni, S., Chang, S. M., et al. (2002) Evidence for an active inflammatory process in the hibernating human myocardium. Am. J. Pathol. 160, 1425–1433.CrossRefPubMedGoogle Scholar
  33. 33.
    Frangogiannis, N. G., Michael, L. H., and Entman, M. L. (2000) Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc. Res. 48, 89–100.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Nikolaos G. Frangogiannis
    • 1
  • Mark L. Entman
    • 1
  1. 1.Section of Cardiovascular Sciences, Department of MedicineBaylor College of MedicineHoustonTX

Personalised recommendations