Skip to main content

Methods for Engineering Resistance to Plant Viruses

  • Protocol
Plant-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 354))

Abstract

The development of genetically engineered resistance to plant viruses is a result of efforts to understand the plant-virus interactions involved in “crossprotection,” a phenomenon observed with several plant virus diseases. Historically, expression of the coat protein gene of Tobacco mosaic virus in transgenic tobacco (Nicotiana tabacum) plants is the first example of transgene-mediated resistance to a plant virus. Subsequently, virus-derived sequences of several plant viruses were shown to confer virus resistance in experimental and/or natural hosts. For plant RNA viruses, virus complementary DNA sequences shown to confer resistance include wild-type genes, mutated genes that produced truncated protein products, and nontranslatable sense or antisense transcripts to various regions of the virus genome. Resistance also has been demonstrated for some viruses by mutant trans-dominant gene products, derived from the movement protein and replication-associated protein genes. In addition to virus-derived sequences, gene sequences of plant origin have also been used for transgenic resistance, and such resistance can be virus-specific, for instance, R genes isolated from resistant plant genotypes, or nonspecific, for example, ribosome inactivating proteins and proteinase inhibitors. Plantibodies and 2–5A synthetase, a class of proteins of mammalian origin, have also been useful in engineering plant virus resistance. In the case of transgenic resistance mediated by viral coat protein, the mechanism of resistance was suggested to operate during the early events of virus infection. However, transgene-mediated RNA silencing and generation of small interfering RNAs appears to be the primary mechanism that confers resistance to plant viruses. Despite the advantages of transgene-mediated resistance, current interest in the development and use of transgenic virus resistant plants is low in most parts of the world. However, because of its real potential, we believe that this technology will have more widespread and renewed interest in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKinney, H. H. (1929) Mosaic diseases in the Canary Islands, West Africa, and Gibraltar. J. Agric. Res. 39, 557–578.

    Google Scholar 

  2. Powell-Abel, P., Nelson, R. S., De, B., et al. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.

    Article  Google Scholar 

  3. Wilson, T. M. A. (1993) Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms. Proc. Natl. Acad. Sci. USA 90, 3134–3141.

    Article  PubMed  CAS  Google Scholar 

  4. Goldbach, R., Bucher, E., and Prins, M. (2003) Resistance mechanisms to plant viruses: an overview. Virus Res. 92, 207–212

    Article  PubMed  CAS  Google Scholar 

  5. Beachy, R. N., Loesch-Fries, S., and Tumer N. E. (1990) Coat protein-mediated resistance against virus infection. Annu. Rev. Phytopathol. 28, 451–474.

    Article  CAS  Google Scholar 

  6. Powell, P. A., Stark, D. M., Sanders, P. R., and Beachy, R. N. (1989) Protection against tobacco mosaic virus in transgenic plants that express tobacco mosaic virus antisense RNA. Proc. Natl. Acad. Sci. USA 86, 6949–6952.

    Article  PubMed  CAS  Google Scholar 

  7. Powell, P. A., Sanders, P. R., Tumer, N., Fraley, R. T., and Beachy, R. N. (1990) Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology 175, 124–130.

    Article  PubMed  CAS  Google Scholar 

  8. Register, J. C., III, and Beachy, R. N. (1988) Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology 166, 524–532.

    Article  PubMed  CAS  Google Scholar 

  9. Lindbo, J. A., and Dougherty, W. G. (1992) Pathogen-derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol Plant-Microbe Interact. 5, 144–153.

    Article  PubMed  CAS  Google Scholar 

  10. van der Vlugt, R. A. Ruiter, R. K., and Goldbach, R. (1992) Evidence for sense RNA-mediated protection to PVYN in tobacco plants transformed with the viral coat protein cistron. Plant Mol. Biol. 20, 631–639.

    Article  PubMed  Google Scholar 

  11. Tepfer, M. (2002) Risk-assessment of virus-resistant transgenic plants. Annu. Rev. Phytopathol. 40, 467–491.

    Article  PubMed  CAS  Google Scholar 

  12. Gonsalves, D. (1998) Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol. 36, 415–437.

    Article  PubMed  CAS  Google Scholar 

  13. Golemboski, D. B., Lomonossoff, G. P., and Zaitlin, M. (1990) Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA 87, 6311–6315.

    Article  PubMed  CAS  Google Scholar 

  14. Nguyen, F., Lucas, W. J., Ding, B., and Zaitlin, M. (1996) Viral RNA trafficking is inhibited in replicase-mediated resistant transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 93, 12,643–12,647.

    Article  PubMed  CAS  Google Scholar 

  15. Morano, M. R. and Baulcombe, D. (1998) Pathogen-derived resistance targeted against the negative-strand RNA of tobacco mosaic virus: RNA strand-specific gene silencing? Plant J. 13, 537–546.

    Article  Google Scholar 

  16. Baulcombe, D. C. (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8, 1833–1844.

    Article  PubMed  CAS  Google Scholar 

  17. Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A., and Beachy, R. N. (1995) A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206, 307–313.

    Article  PubMed  CAS  Google Scholar 

  18. Duan, Y. P., Powell, C. A., Purcifull, D. E., Broglio, P., and Hiebert, E. (1997) Phenotypic variation in transgenic tobacco expressing mutated geminivirus movement/pathogenicity (BC1) proteins. Mol. Plant-Microbe Interact. 10, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  19. Hou, Y. M., Sanders, R., Ursin, V. M., and Gilbertson, R. L. (2000) Transgenic plants expressing geminivirus movement proteins: abnormal phenotypes and delayed infection by Tomato mottle virus in transgenic tomatoes expressing the Bean dwarf mosaic virus BV1 or BC1 proteins. Mol. Plant-Microbe Interact. 13, 297–308.

    Article  PubMed  CAS  Google Scholar 

  20. Napoli, C., Lemieux, C., and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.

    Article  PubMed  CAS  Google Scholar 

  21. Hamilton, A. J. and Baulcombe, D. C. (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.

    Article  PubMed  CAS  Google Scholar 

  22. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  PubMed  CAS  Google Scholar 

  23. Lindbo, J., Silva-Rosales, L., Proebsting, W., and Dougherty, W. (1993) Induction of a highly specific antiviral state in transgenic plants: Implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749–1759.

    Article  PubMed  CAS  Google Scholar 

  24. Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., and Waterhouse, P. M. (2000) Gene expression: total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320.

    Article  PubMed  CAS  Google Scholar 

  25. Helliwell, C., and Waterhouse, P. (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30, 289–295.

    Article  PubMed  CAS  Google Scholar 

  26. Wesley, S. V., Helliwell, C. A., Smith, N. A., et al. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581–590.

    Article  PubMed  CAS  Google Scholar 

  27. Tenllado, F., Llave, C., and Diaz-Ruiz, J. R. (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res. 102, 85–96.

    Article  PubMed  CAS  Google Scholar 

  28. Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C., and Baker, B. (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78, 1101–1115.

    Article  PubMed  CAS  Google Scholar 

  29. Whitham, S., McCormick, S., Baker, B. (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad. Sci. USA 6, 8776–8781.

    Article  Google Scholar 

  30. Moffett, P., Farnham, G., Peart, J., and Baulcombe, D. C. (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J. 21, 4511–4519.

    Article  PubMed  CAS  Google Scholar 

  31. Lanfermeijer, F. C., Dijkhuis, J., Sturre, M. J. G., de Haan, P., and Hille, J. (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol Biol. 52, 1037–1049.

    Article  PubMed  CAS  Google Scholar 

  32. Chisholm, S. T., Mahajan, S. K., Whitham, S. A., Yamamoto, M. L., and Carrington, J. C. (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc. Natl. Acad. Sci. USA 97, 489–494.

    Article  PubMed  CAS  Google Scholar 

  33. Whitham, S. A., Anderberg, R. J., Chisholm, S. T., and Carrington, J. C. (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12, 569–582.

    Article  PubMed  CAS  Google Scholar 

  34. Gutierrez-Campos, R., Torres-Acosta, J. A., Saucedo-Arias, L. J., and Gomez-Lim, M. A. (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat. Biotechnol. 17, 1223–1226.

    Article  PubMed  CAS  Google Scholar 

  35. Lodge, J. K., Kaniewski, W. K., and Tumer, N. E. (1993) Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc. Natl. Acad. Sci. USA 90, 7089–7093.

    Article  PubMed  CAS  Google Scholar 

  36. Tumer, N. E., Hwang, D. J., and Bonness, M. (1997) C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. Proc. Natl. Acad. Sci. USA 94, 3866–3871.

    Article  PubMed  CAS  Google Scholar 

  37. Hudak, K. A., Bauman, J. D., and Tumer, N. E. (2002) Pokeweed antiviral protein binds to the cap structure of eukaryotic mRNA and depurinates the mRNA downstream of the cap. RNA 8, 1148–1159.

    Article  PubMed  CAS  Google Scholar 

  38. Hong, Y., Saunders, K., Hartley, M. R., and Stanley, J. (1996) Resistance to geminivirus infection by virus-induced expression of dianthin in transgenic plants. Virology 220, 119–127.

    Article  PubMed  CAS  Google Scholar 

  39. Krishnan, R., McDonald, K. A., Dandekar, A. M., Jackman, A. P., and Falk, B. (2002) Expression of recombinant trichosanthin, a ribosome-inactivating protein, in transgenic tobacco. J. Biotechnol. 97, 69–88.

    Article  PubMed  CAS  Google Scholar 

  40. Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A., and Galeffi, P. (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366, 469–472.

    Article  PubMed  CAS  Google Scholar 

  41. Franconi, R., Roggero, P., Pirazzi, P., et al. (1999) Functional expression in bacteria and plants of an scFv antibody fragment against tospoviruses. Immunotechnology 4, 189–201.

    Article  PubMed  CAS  Google Scholar 

  42. Truve, E., Kelve, M., Aaspollu, A., Kuusksalu, A., Seppanen, P., and Saarma, M. (1994) Principles and background for the construction of transgenic plants displaying multiple virus resistance. Arch. Virol. Suppl. 9, 41–50.

    PubMed  CAS  Google Scholar 

  43. Snead, M. A., Alting-Mees, M. A., and Short, J. M. (1998) cDNA library construction for lambda-ZAP based vectors. In Methods in Molecular Biology Vol 81: Plant Virology Protocols. (Foster, G. D. and Taylor, S. C., eds.), Humana Press, Totowa, NJ, pp. 255–268.

    Google Scholar 

  44. Stratford, R. (1998) PCR cloning of coat protein genes. In Methods in Molecular Biology Vol 81: Plant Virology Protocols. (Foster, G. D. and Taylor, S. C., eds.), Humana Press, Totowa, NJ, pp. 269–278.

    Google Scholar 

  45. Lin, H. X., Rubio, L., Smythe, A., Jiminez, M., and Falk, B. W. (2003) Genetic diversity and biological variation among California isolates of Cucumber mosaic virus. J. Gen. Virol. 84, 249–258.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the California Citrus Research Board, and the University of California Discovery Grants Program (BioSTAR).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Sudarshana, M.R., Roy, G., Falk, B.W. (2007). Methods for Engineering Resistance to Plant Viruses. In: Ronald, P.C. (eds) Plant-Pathogen Interactions. Methods in Molecular Biology, vol 354. Humana Press. https://doi.org/10.1385/1-59259-966-4:183

Download citation

  • DOI: https://doi.org/10.1385/1-59259-966-4:183

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-448-7

  • Online ISBN: 978-1-59259-966-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics