Skip to main content

In Silico Protein Design

Fitting Sequence Onto Structure

  • Protocol
Book cover Bioinformatics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 316))

Abstract

In the last 10 yr, efforts have begun to combine the goals and approaches of computational molecular design and protein sequence analysis to provide tools for the rational mutagenesis and functional modification of proteins. These approaches use analysis of the three-dimensional structure of a protein to guide the selection of appropriate amino acid sequences to create desired properties or functions. The convergence of low-cost, high-speed computers, a tremendous increase in protein structure information, and a growing understanding of the forces that control protein structure has resulted in dramatic advances in the ability to control protein function and structure and to create the first truly artificial proteins. Various academic software packages have been developed for in silico protein design. The methods for selecting the protein structure, defining the portion to be designed, and choosing the input parameters for the software are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pabo, C. (1983) Molecular technology: designing proteins and peptides. Nature 301, 200.

    Article  PubMed  CAS  Google Scholar 

  2. Dahiyat, B. I. and Mayo, S. L. (1996) Protein design automation. Protein Sci. 5, 895–903.

    Article  PubMed  CAS  Google Scholar 

  3. Desjarlais, J. R. and Handel, T. M. (1995) De novo design of the hydrophobic cores of proteins. Protein Sci. 4, 2006–2018.

    Article  PubMed  CAS  Google Scholar 

  4. Hellinga, H. W. and Richards, F. M. (1994) Optimal sequence selection in proteins of known structure by simulated evolution. Proc. Natl. Acad. Sci. USA 91, 5803–5807.

    Article  PubMed  CAS  Google Scholar 

  5. Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., and Baker, D. (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368.

    Article  PubMed  CAS  Google Scholar 

  6. Marvin, J. S., Corcoran, E. E., Hattangadi, N. A., Zhang, J. V., Gere, S. A., and Hellinga, H. W. (1997) The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc. Natl. Acad. Sci. USA 94, 4366–4371.

    Article  PubMed  CAS  Google Scholar 

  7. Marvin, J. S. and Hellinga, H. W. (2001) Conversion of a maltose receptor into a zinc biosensor by computational design. Proc. Natl. Acad. Sci. USA 98, 4955–4960.

    Article  PubMed  CAS  Google Scholar 

  8. Hayes, R. J., Bentzien, J., Ary, M. L., et al. (2002) Combining computational and experimental screening for rapid optimization of protein properties. Proc. Natl. Acad. Sci. USA 99, 15,926–15,931.

    Article  PubMed  CAS  Google Scholar 

  9. Dahiyat, B. I., Gordon, D. B., and Mayo, S. L. (1997) Automated design of the surface positions of protein helices. Protein Sci. 6, 1333–1337.

    Article  PubMed  CAS  Google Scholar 

  10. Malakauskas, S. M. and Mayo, S. L. (1998) Design, structure and stability of a hyperthermophilic protein variant. Nat. Struct. Biol. 5, 470–475.

    Article  PubMed  CAS  Google Scholar 

  11. Su, A. and Mayo, S. L. (1997) Coupling backbone flexibility and amino acid sequence selection in protein design. Protein Sci. 6, 1701–1707.

    Article  PubMed  CAS  Google Scholar 

  12. Luo, P., Hayes, R. J., Chan, C., et al. (2002) Development of a cytokine analog with enhanced stability using computational ultrahigh throughput screening. Protein Sci. 11, 1218–1226.

    Article  PubMed  CAS  Google Scholar 

  13. Filikov, A. V., Hayes, R. J., Luo, P., et al. (2002) Computational stabilization of human growth hormone. Protein Sci. 11, 1452–1461.

    Article  PubMed  CAS  Google Scholar 

  14. Dahiyat, B. I. and Mayo, S. L. (1997) Probing the role of packing specificity in protein design. Proc. Natl. Acad. Sci. USA 94, 10,172–10,177.

    Article  PubMed  CAS  Google Scholar 

  15. Marshall, S. A. and Mayo, S. L. (2001) Achieving stability and conformational specificity in designed proteins via binary patterning. J. Mol. Biol. 305, 619–631.

    Article  PubMed  CAS  Google Scholar 

  16. Marshall, S. A., Morgan, C. S., and Mayo, S. L. (2002) Electrostatics significantly affect the stability of designed homeodomain variants. J. Mol. Biol. 316, 189–199.

    Article  PubMed  CAS  Google Scholar 

  17. Dahiyat, B. I. and Mayo, S. L. (1997) De novo protein design: fully automated sequence selection. Science 278, 82–87.

    Article  PubMed  CAS  Google Scholar 

  18. Hellinga, H. W. and Richards, F. M. (1991) Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry. J. Mol. Biol. 222, 763–785.

    Article  PubMed  CAS  Google Scholar 

  19. Hellinga, H. W., Caradonna, J. P., and Richards, F. M. (1991) Construction of new ligand binding sites in proteins of known structure. II. Grafting of a buried transition metal binding site into Escherichia coli thioredoxin. J. Mol. Biol. 222, 787–803.

    Article  PubMed  CAS  Google Scholar 

  20. Dwyer, M. A., Looger, L. L., and Hellinga, H. W. (2004) Computational design of a biologically active enzyme. Science 304, 1967–1971.

    Article  PubMed  CAS  Google Scholar 

  21. Bolon, D. N. and Mayo, S. L. (2001) Enzyme-like proteins by computational design. Proc. Natl. Acad. Sci. USA 98, 14,274–14,279.

    Article  PubMed  CAS  Google Scholar 

  22. Dwyer, M. A., Looger, L. L., and Hellinga, H. W. (2003) Computational design of a Zn2+ receptor that controls bacterial gene expression. Proc. Natl. Acad. Sci. USA 100, 11,255–11,260.

    Article  PubMed  CAS  Google Scholar 

  23. Looger, L. L., Dwyer, M. A., Smith, J. J., and Hellinga, H. W. (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190.

    Article  PubMed  CAS  Google Scholar 

  24. Steed, P. M., Tansey, M. G., Zalevsky, J., et al. (2003) Inactivation of TNF signaling by rationally designed dominant-negative TNF variants. Science 301, 1895–1898.

    Article  PubMed  CAS  Google Scholar 

  25. Ponder, J. W. and Richards, F. M. (1987) Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193, 775–791.

    Article  PubMed  CAS  Google Scholar 

  26. Dunbrack, R. L. Jr. and Karplus, M. (1993) Backbone-dependent rotamer library for proteins: application to side-chain prediction. J. Mol. Biol. 230, 543–574.

    Article  PubMed  CAS  Google Scholar 

  27. Ross, S. A., Sarisky, C. A., Su, A., and Mayo, S. L. (2001) Designed protein G core variants fold to native-like structures: sequence selection by ORBIT tolerates variation in backbone specification. Protein Sci. 10, 450–454.

    Article  PubMed  CAS  Google Scholar 

  28. Kuhlman, B. and Baker, D. (2000) Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. USA 97, 10,383–10,388.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Dahiyat, B.I. (2006). In Silico Protein Design. In: Larson, R.S. (eds) Bioinformatics and Drug Discovery. Methods in Molecular Biology, vol 316. Humana Press. https://doi.org/10.1385/1-59259-964-8:359

Download citation

  • DOI: https://doi.org/10.1385/1-59259-964-8:359

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-346-6

  • Online ISBN: 978-1-59259-964-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics