Skip to main content

Nuclear Magnetic Resonance-Based Screening Methods for Drug Discovery

  • Protocol
  • 1663 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 316))

Abstract

Nuclear magnetic resonance (NMR) techniques are widely used in the drug discovery process. The primary feature exploited in these investigations is the large difference in mass between drugs and receptors (usually proteins) and the effect that this has on the rotational or translational correlation times for drugs bound to their targets. Many NMR parameters, such as the diffusion coefficient, spin diffusion, nuclear Overhauser enhancement, and transverse and longitudinal relaxation times, are strong functions of either the overall tumbling or translation of molecules in solution. This has led to the development of a wide variety of NMR techniques applicable to the elucidation of protein and nucleic acid structure in solution, the screening of drug candidates for binding to a target of choice, and the study of the conformational changes that occur in a target on drug binding. Highthroughput screening by NMR methods has recently received a boost from the introduction of sophisticated computational techniques for reducing the time needed for the acquistion of the primary NMR data for multidimensional studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pochapsky, S. S. and Pochapsky, T. C. (2001) Nuclear magnetic resonance as a tool in drug discovery, metabolism and disposition. Curr. Top. Med. Chem. 1, 427–441.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson, M. A. and Pinto, B. M. (2004) NMR spectroscopic and molecular modeling studies of protein-carbohydrate and protein-peptide interactions. Carbohydr. Res. 339, 907–928.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, A. and Shapiro, M. J. (1999) Affinity NMR. Anal. Chem. 71, 669A–675A.

    PubMed  CAS  Google Scholar 

  4. De Clercq, E. (2002) Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov. 1, 13–25.

    Article  PubMed  CAS  Google Scholar 

  5. Stejskal, E. O. and Tanner, J. E. (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292.

    Article  CAS  Google Scholar 

  6. Luo, R. S., Liu, M. L., and Mao, X. A. (1999) NMR diffusion and relaxation study of drug-protein interaction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 55A, 1897–1901.

    Article  PubMed  CAS  Google Scholar 

  7. Utsumi, H., Seki, H., Yamaguchi, K., and Tashiro, M. (2003) Segment identification of a ligand binding with a protein receptor using multidimensional T1rho-, diffusion-filtered and diffusion-ordered NOESY experiments. Anal. Sci. 19, 1441–1443.

    Article  PubMed  CAS  Google Scholar 

  8. Lucas, L. H., Yan, J., Larive, C. K., Zartler, E. R., and Shapiro, M. J. (2003) Transferred nuclear overhauser effect in nuclear magnetic resonance diffusion measurements of ligand-protein binding. Anal. Chem. 75, 627–634.

    Article  PubMed  CAS  Google Scholar 

  9. Ni, F. (2004) Recent developments in transferred NOE methods. Prog. Nucl. Magn. Reson. Spectrosc. 26, 517–606.

    Article  Google Scholar 

  10. Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12,366–12,371.

    Article  PubMed  CAS  Google Scholar 

  11. Fernandez, C. and Wider, G. (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr. Opin. Struct. Biol. 13, 570–580.

    Article  PubMed  CAS  Google Scholar 

  12. Pellecchia, M., Meininger, D., Shen, A. L., Jack, R., Kasper, C. B., and Sem, D. S. (2001) SEA-TROSY (solvent exposed amides with TROSY): a method to resolve the problem of spectral overlap in very large proteins. J. Am. Chem. Soc. 123, 4633, 4634.

    Article  PubMed  CAS  Google Scholar 

  13. Lin, D., Sze, K. H., Cui, Y., and Zhu, G. (2002) Clean SEA-HSQC: a method to map solvent exposed amides in large non-deuterated proteins with gradient-enhanced HSQC. J. Biomol. NMR 23, 317–322.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, S. and Szyperski, T. (2004) GFT NMR experiments for polypeptide backbone and 13Cbeta chemical shift assignment. J. Biomol. NMR 28, 117–130.

    Article  PubMed  CAS  Google Scholar 

  15. Frydman, L., Scherf, T., and Lupulescu, A. (2002) The acquisition of multidimensional NMR spectra within a single scan. Proc. Natl. Acad. Sci. USA 99, 15,858–15,862.

    Article  PubMed  CAS  Google Scholar 

  16. Weigelt, J., Wikstrom, M., Schultz, J., and van Dongen, M. J. (2002) Site-selective labeling strategies for screening by NMR. Comb. Chem. High Throughput Screen. 5, 623–630.

    PubMed  CAS  Google Scholar 

  17. Tolman, J. R., Flanagan, J. M., Kennedy, M. A., and Prestegard, J. H. (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283.

    Article  PubMed  CAS  Google Scholar 

  18. Skrynnikov, N. R., Goto, N. K., Yang, D., et al. (2000) Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. J. Mol. Biol. 295, 1265–1273.

    Article  PubMed  CAS  Google Scholar 

  19. Shuker, S. B., Hajduk, P. J., Meadows, R. P., and Fesik, S. W. (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534.

    Article  PubMed  CAS  Google Scholar 

  20. Hajduk, P. J., Sheppard G., Nettesheim, D. G., et al. (1997) Discovery of potent non-peptide inhibitors of stromelysin using SAR by NMR. J. Am. Chem. Soc. 119, 5818–5827.

    Article  CAS  Google Scholar 

  21. Hajduk, P. J., Olejniczak, E. T., and Fesik, S. W. (1997) One-dimensional relaxation-and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J. Am. Chem. Soc. 119, 12,257–12,261.

    Article  CAS  Google Scholar 

  22. Lin, M. and Shapiro, M. J. (1996) Mixture analysis in combinatorial chemistry application of diffusion-resolved NMR spectroscopy. J. Organic Chem. 61, 7617–7619.

    Article  CAS  Google Scholar 

  23. Hajduk, P. J., Dinges, J., Miknis, G. F., et al. (1997) NMR-based discovery of lead inhibitors that block DNA binding of the human papillomavirus E2 protein. J. Med. Chem. 40, 3144–3150.

    Article  PubMed  CAS  Google Scholar 

  24. Danielsson, J., Jarvet, J., Damberg, P., and Graslund, A. (2004) Two-site binding of beta-cyclodextrin to the Alzheimer Abeta(1-40) peptide measured with combined PFG-NMR diffusion and induced chemical shifts. Biochemistry 43, 6261–6269.

    Article  PubMed  CAS  Google Scholar 

  25. Pelta, M. D., Morris, G. A., Stchedroff, M. J., and Hammond, S. J. (2002) A one-shot sequence for high-resolution diffusion-ordered spectroscopy. Magn. Reson. Chem. 40, S147–S152.

    Article  CAS  Google Scholar 

  26. Derrick, T. S., McCord, E. F., and Larive, C. K. (2002) Analysis of protein/ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background. J. Magn. Reson. 155, 217–225.

    Article  PubMed  CAS  Google Scholar 

  27. Lin, M., Shapiro, M. J., and Wareing, J. R. (1997) Diffusion-edited NMR-affinity NMR for direct observation of molecular interactions. J. Am. Chem. Soc. 119, 5249, 5250.

    Article  CAS  Google Scholar 

  28. Ponstingl, H. and Otting, G. (1997) NMR assignments, secondary structure and hydration of oxidized Escherichia coli flavodoxin. Eur. J. Biochem. 244, 384–399.

    Article  PubMed  CAS  Google Scholar 

  29. Gonnella, N., Lin, M., Shapiro, M. J., Wareing, J. R., and Zhang, X. (1998) Isotope-filtered affinity NMR. J. Magn. Reson. 131, 336–338.

    Article  PubMed  CAS  Google Scholar 

  30. Tillett, M. L., Horsfield, M. A., Lian, L. Y., and Norwood, T. J. (1999) Protein-ligand interactions measured by 15N-filtered diffusion experiments. J. Biomol. NMR 13, 223–232.

    Article  PubMed  CAS  Google Scholar 

  31. Yuan, P., Marshall, V. P., Petzold, G. L., Poorman, R. A., and Stockman, B. J. (1999) Dynamics of stromelysin/inhibitor interactions studied by 15N NMR relaxation measurements: comparison of ligand binding to the S1–S3 and S′1–S′3 subsites. J. Biomol. NMR 15, 55–64

    Article  PubMed  CAS  Google Scholar 

  32. Clore, G. M. and Gronenborn, A. M. (1982) Theory and applications of the transferred nuclear Overhauser effect to the study of the conformations of small ligands bound to proteins. J. Magn. Reson. 48, 402–417.

    CAS  Google Scholar 

  33. Campbell, A. P. and Sykes, B. D. (1993) The two-dimensional transferred nuclear Overhauser effect: theory and practice. Annu. Rev. Biophys. Biomol. Struct. 22, 99–122.

    Article  PubMed  CAS  Google Scholar 

  34. Meyer, B., Weimar, T., and Peters, T. (1997) Screening mixtures for biological activity by NMR. Eur. J. Biochem. 246, 705–709.

    Article  PubMed  CAS  Google Scholar 

  35. Henrichson, D., Ernst, B., Magnani, J. L., Wang, W. T., Meyer, B., and Peters, T. (1999) Bioaffinity NMR spectroscopy: identification of an E-selectin antagonist in a substance mixture by transfer NOE. Angew. Chem. Intl. Ed. 38, 98–102.

    Article  Google Scholar 

  36. Herfurth, L., Weimar, T., and Peters, T. (2000) Application of 3D-TOCSY-trNOESY for the assignment of bioactive ligands from mixtures. Angew. Chem. Int. Ed. Engl. 39, 2097–2099.

    Article  PubMed  CAS  Google Scholar 

  37. Verdier, L., Gharbi-Benarous, J., Bertho, G., Mauvais, P., and Girault, J. P. (2002) Antibiotic resistance peptides: interaction of peptides conferring macrolide and ketolide resistance with Staphylococcus aureus ribosomes: conformation of bound peptides as determined by transferred NOE experiments. Biochemistry 41, 4218–4229.

    Article  PubMed  CAS  Google Scholar 

  38. Adams, E. R., Dratz, E. A., Gizachew, D., et al. (1997) Interaction of human neutrophil flavocytochrome b with cytosolic proteins: transferred-NOESY NMR studies of a gp91phox C-terminal peptide bound to p47phox. Biochem. J. 325(Pt. 1), 249–257.

    PubMed  CAS  Google Scholar 

  39. Kleinberg, M. E., Mital, D., Rotrosen, D., and Malech, H. L. (1992) Characterization of a phagocyte cytochrome b558 91-kilodalton subunit functional domain: identification of peptide sequence and amino acids essential for activity. Biochemistry 31, 2686–2690.

    Article  PubMed  CAS  Google Scholar 

  40. Kleinjung, J., Petit, M. C., Orlewski, P., et al. (2000) The third-dimensional structure of the complex between an Fv antibody fragment and an analogue of the main immunogenic region of the acetylcholine receptor: a combined two-dimensional NMR, homology, and molecular modeling approach. Biopolymers 53, 113–128.

    Article  PubMed  CAS  Google Scholar 

  41. Inooka, H., Ohtaki, T., Kitahara, O., et al. (2001) Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat. Struct. Biol. 8, 161–165.

    Article  PubMed  CAS  Google Scholar 

  42. Hynes, R. O. (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687.

    Article  PubMed  CAS  Google Scholar 

  43. Shimaoka, M. and Springer, T. A. (2003) Therapeutic antagonists and conformational regulation of integrin function. Nat. Rev. Drug Discov. 2, 703–716.

    Article  PubMed  CAS  Google Scholar 

  44. Xiong, J. P., Stehle, T., Zhang, R., et al. (2002) Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155.

    Article  PubMed  CAS  Google Scholar 

  45. Zwahlen, C., Vincent, S. J. F., Dibari, L., Levitt, M. H., and Bodenhausen, G. (1994) Quenching spin diffusion in selective measurements of transient overhauser effects in nuclear magnetic resonance applications to olignucleotides. J. Am. Chem. Soc. 116, 362–368.

    Article  CAS  Google Scholar 

  46. Dechantsreiter, M. A., Planker, E., Matha, B., et al. (1999) N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. Med. Chem. 42, 3033–3040.

    Article  CAS  Google Scholar 

  47. Johnson, M. A., Rotondo, A., and Pinto, B. M. (2002) NMR studies of the antibody-bound conformation of a carbohydrate-mimetic peptide. Biochemistry 41, 2149–2157.

    Article  PubMed  CAS  Google Scholar 

  48. Dalvit, C., Fogliatto, G., Stewart, A., Veronesi, M., and Stockman, B. (2001) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J. Biomol. NMR 21, 349–359.

    Article  PubMed  CAS  Google Scholar 

  49. Dalvit, C., Fasolini, M., Flocco, M., Knapp, S., Pevarello, P., and Veronesi, M. (2002) NMR-Based screening with competition water-ligand observed via gradient spectroscopy experiments: detection of high-affinity ligands. J. Med. Chem. 45, 2610–2614.

    Article  PubMed  CAS  Google Scholar 

  50. Mayer, M. and Meyer, B. (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 38, 1784–1788.

    Article  CAS  Google Scholar 

  51. Klein, J., Meinecke, R., Mayer, M., and Meyer, B. (1999) Detecting binding affinity to immobilized receptor proteins in compound libraries by HR-MAS STD NMR. J. Am. Chem. Soc. 121, 5336, 5337.

    Article  CAS  Google Scholar 

  52. Tranqui, L., Andrieux, A., Hudry-Clergeon, G., et al. (1989) Differential structural requirements for fibrinogen binding to platelets and to endothelial cells. J. Cell Biol. 108, 2519–2527.

    Article  PubMed  CAS  Google Scholar 

  53. Meinecke, R. and Meyer, B. (2001) Determination of the binding specificity of an integral membrane protein by saturation transfer difference NMR: RGD peptide ligands binding to integrin alphaIIbbeta3. J. Med. Chem. 44, 3059–3065.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang, L., Mattern, R. H., Malaney, T. I., Pierschbacher, M. D., and Goodman, M. (2002) Receptor-bound conformation of an alpha(5)beta(1) integrin antagonist by (15)N-edited 2D transferred nuclear overhauser effects. J. Am. Chem. Soc. 124, 2862–2863.

    Article  PubMed  CAS  Google Scholar 

  55. Fielding, L., Fletcher, D., Rutherford, S., Kaur, J., and Mestres, J. (2003) Exploring the active site of human factor Xa protein by NMR screening of small molecule probes. Organic Biomol. Chem. 1, 4235–4241.

    Article  CAS  Google Scholar 

  56. Kooistra, O., Herfurth, L., Luneberg, E., Frosch, M., Peters, T., and Zahringer, U. (2002) Epitope mapping of the O-chain polysaccharide of Legionella pneumophila serogroup 1 lipopolysaccharide by saturation-transfer-difference NMR spectroscopy. Eur. J. Biochem. 269, 573–582.

    Article  PubMed  CAS  Google Scholar 

  57. Wang, Y. S., Liu, D., and Wyss, D. F. (2004) Competition STD NMR for the detection of high-affinity ligands and NMR-based screening. Magn. Reson. Chem. 42, 485–489.

    Article  PubMed  CAS  Google Scholar 

  58. Yan, J., Kline, A. D., Mo, H., Shapiro, M. J., and Zartler, E. R. (2003) The effect of relaxation on the epitope mapping by saturation transfer difference NMR. J. Magn. Reson. 163, 270–276.

    Article  PubMed  CAS  Google Scholar 

  59. Jayalakshmi, V. and Krishna, N. R. (2002) Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. J. Magn. Reson. 155, 106–118.

    Article  PubMed  CAS  Google Scholar 

  60. Jayalakshmi, V. and Rama, K. N. (2004) CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities. J. Magn. Reson. 168, 36–45.

    Article  PubMed  CAS  Google Scholar 

  61. Foster, M. P., Wuttke, D. S., Clemens, K. R., et al. (1998) Chemical shift as a probe of molecular interfaces: NMR studies of DNA binding by the three amino-terminal zinc finger domains from transcription factor IIIA. J. Biomol. NMR 12, 51–71.

    Article  PubMed  CAS  Google Scholar 

  62. Medek, A., Hajduk, P. J., Mack, J., and Fesik, S. W. (2000) The use of differential chemical shifts for determining the binding site location and orientation of protein-bound ligands. J. Am. Chem. Soc. 122, 1241, 1242.

    Article  CAS  Google Scholar 

  63. Dornan, J., Taylor, P., and Walkinshaw, M. D. (2003) Structures of immunophilins and their ligand complexes. Curr. Top. Med. Chem. 3, 1392–1409.

    Article  PubMed  CAS  Google Scholar 

  64. Hajduk, P. J., Shuker, S. B., Nettesheim, D. G., et al. (2002) NMR-based modification of matrix metalloproteinase inhibitors with improved bioavailability. J. Med. Chem. 45, 5628–5639.

    Article  PubMed  CAS  Google Scholar 

  65. Liu, G., Xin, Z., Pei, Z., et al. (2003) Fragment screening and assembly: a highly efficient approach to a selective and cell active protein tyrosine phosphatase 1B inhibitor. J. Med. Chem. 46, 4232–4235.

    Article  PubMed  CAS  Google Scholar 

  66. Puius, Y. A., Zhao, Y., Sullivan, M., Lawrence, D. S., Almo, S. C., and Zhang, Z. Y. (1997) Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc. Natl. Acad. Sci. USA 94, 13,420–13,425.

    Article  PubMed  CAS  Google Scholar 

  67. Bolon, P. J., Al Hashimi, H. M., and Prestegard, J. H. (1999) Residual dipolar coupling derived orientational constraints on ligand geometry in a 53 kDa protein-ligand complex. J. Mol. Biol. 293, 107–115.

    Article  PubMed  CAS  Google Scholar 

  68. Lipsitz, R. S. and Tjandra, N. (2004) Residual dipolar couplings in NMR structure analysis. Annu. Rev. Biophys. Biomol. Struct. 33, 387–413.

    Article  PubMed  CAS  Google Scholar 

  69. Giesen, A. W., Homans, S. W., and Brown, J. M. (2003) Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints. J. Biomol. NMR 25, 63–71.

    Article  PubMed  CAS  Google Scholar 

  70. Wedemeyer, W. J., Rohl, C. A., and Scherag, H. A. (2002) Exact solutions for chemical bond orientations from residual dipolar couplings. J. Biomol. NMR 22, 137–151.

    Article  PubMed  CAS  Google Scholar 

  71. Wang, L. and Donald, B. R. (2004) Exact solutions for internuclear vectors and backbone dihedral angles from NH residual dipolar couplings in two media, and their application in a systematic search algorithm for determining protein backbone structure. J. Biomol. NMR 29, 223–242.

    Article  PubMed  CAS  Google Scholar 

  72. Huang, X., Moy, F., and Powers, R. (2000) Evaluation of the utility of NMR structures determined from minimal NOE-based restraints for structure-based drug design, using MMP-1 as an example. Biochemistry 39, 13,365, 13,375.

    Article  PubMed  CAS  Google Scholar 

  73. Jain, N. U., Noble, S., and Prestegard, J. H. (2003) Structural characterization of a mannose-binding protein-trimannoside complex using residual dipolar couplings. J. Mol. Biol. 328, 451–462.

    Article  PubMed  CAS  Google Scholar 

  74. Tian, F., Al Hashimi, H. M., Craighead, J. L., and Prestegard, J. H. (2001) Conformational analysis of a flexible oligosaccharide using residual dipolar couplings. J. Am. Chem. Soc. 123, 485–492.

    Article  PubMed  CAS  Google Scholar 

  75. Umemoto, K., Leffler, H., Venot, A., Valafar, H., and Prestegard, J. H. (2003) Conformational differences in liganded and unliganded states of Galectin-3. Biochemistry 42, 3688–3695.

    Article  PubMed  CAS  Google Scholar 

  76. Sillerud, L. O. and Larson R. S. (2005) Design and structure of peptide and peptide-mimetic antagonists of protein-protein interaction. Curr. Protein Pept. Sci. 6, 151–169.

    Article  PubMed  CAS  Google Scholar 

  77. Pellecchia, M., Sebbel, P., Hermanns, U., Wuthrich, K., and Glockshuber, R. (1999) Pilus chaperone FimC-adhesin FimH interactions mapped by TROSY-NMR. Nat. Struct. Biol. 6, 336–339.

    Article  PubMed  CAS  Google Scholar 

  78. Sun, W., Yang, J., and Liu, X. Q. (2004) Synthetic two-piece and three-piece split inteins for protein trans-splicing. J. Biol. Chem. 279, 35,281–35,286.

    Article  PubMed  CAS  Google Scholar 

  79. David, R., Richter, M. P., and Beck-Sickinger, A. G. (2004) Expressed protein ligation: method and applications. Eur. J. Biochem. 271, 663–677.

    Article  PubMed  CAS  Google Scholar 

  80. Fernandez, C., Hilty, C., Bonjour, S., Adeishvili, K., Pervushin, K., and Wuthrich, K. (2001) Solution NMR studies of the integral membrane proteins OmpX and OmpA from Escherichia coli. FEBS Lett. 504, 173–178.

    Article  PubMed  CAS  Google Scholar 

  81. Fernandez, C., Adeishvili, K., and Wuthrich, K. (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc. Natl. Acad. Sci. USA 98, 2358–2363.

    Article  PubMed  CAS  Google Scholar 

  82. McElroy, C., Manfredo, A., Wendt, A., Gollnick, P., and Foster, M. (2002) TROSY-NMR studies of the 91kDa TRAP protein reveal allosteric control of a gene regulatory protein by ligand-altered flexibility. J. Mol. Biol. 323, 463–473.

    Article  PubMed  CAS  Google Scholar 

  83. Wienk, H., Maneg, O., Lucke, C., Pristovsek, P., Lohr, F., Ludwig, B., and Ruterjans, H. (2003) Interaction of cytochrome c with cytochrome c oxidase: an NMR study on two soluble fragments derived from Paracoccus denitrificans. Biochemistry 42, 6005–6012.

    Article  PubMed  CAS  Google Scholar 

  84. Yuan, C., Li, J., Mahajan, A., Poi, M. J., Byeon, I. J., and Tsai, M. D. (2004) Solution structure of the human oncogenic protein gankyrin containing seven ankyrin repeats and analysis of its structure—function relationship. Biochemistry 43, 12,152–12,161.

    Article  PubMed  CAS  Google Scholar 

  85. Leone, M., Zhai, D., Sareth, S., Kitada, S., Reed, J. C., and Pellecchia, M. (2003) Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res. 63, 8118–8121.

    PubMed  CAS  Google Scholar 

  86. Morgan, W. D., Lock, M. J., Frenkiel, T. A., Grainger, M., and Holder, A. A. (2004) Malaria parasite-inhibitory antibody epitopes on Plasmodium falciparum merozoite surface protein-1(19) mapped by TROSY NMR. Mol. Biochem. Parasitol. 138, 29–36.

    Article  PubMed  CAS  Google Scholar 

  87. Hajduk, P. J., Meadows, R. P., and Fesik, S. W. (1999) NMR-based screening in drug discovery. Q. Rev. Biophys. 32, 211–240.

    Article  PubMed  CAS  Google Scholar 

  88. Hajduk, P. J., Gerfin, T., Boehlen, J. M., Haberli, M., Marek, D., and Fesik, S. W. (1999) High-throughput nuclear magnetic resonance-based screening. J. Med. Chem. 42, 2315–2317.

    Article  PubMed  CAS  Google Scholar 

  89. Tugarinov, V., Sprangers, R., and Kay, L. E. (2004) Line narrowing in methyl-TROSY using zero-quantum 1H-13C NMR spectroscopy. J. Am. Chem. Soc. 126, 4921–4925.

    Article  PubMed  CAS  Google Scholar 

  90. Bogan, A. A. and Thorn, K. S. (1998) Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9.

    Article  PubMed  CAS  Google Scholar 

  91. Rodriguez-Mias, R. A. and Pellecchia, M. (2003) Use of selective Trp side chain labeling to characterize protein-protein and protein-ligand interactions by NMR spectroscopy. J. Am. Chem. Soc. 125, 2892, 2893.

    Article  PubMed  CAS  Google Scholar 

  92. Dalvit, C., Ardini, E., Flocco, M., Fogliatto, G. P., Mongelli, N., and Veronesi, M. (2003) A general NMR method for rapid, efficient, and reliable biochemical screening. J. Am. Chem. Soc. 125, 14,620, 14,625.

    Article  PubMed  CAS  Google Scholar 

  93. Folkers, G. E., van Buuren, B. N., and Kaptein, R. (2004) Expression screening, protein purification and NMR analysis of human protein domains for structural genomics. J. Struct. Funct. Genomics 5, 119–131.

    Article  PubMed  CAS  Google Scholar 

  94. Scheich, C., Leitner, D., Sievert, V., et al. (2004) Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis. BMC. Struct. Biol. 4, 4.

    Article  PubMed  Google Scholar 

  95. Kim, S. and Szyperski, T. (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J. Am. Chem. Soc. 125, 1385–1393.

    Article  PubMed  CAS  Google Scholar 

  96. Xia, Y., Zhu, G., Veeraraghavan, S., and Gao, X. (2004) (3,2)D GFT-NMR experiments for fast data collection from proteins. J. Biomol. NMR 29, 467–476.

    Article  PubMed  CAS  Google Scholar 

  97. Orekhov, V. Y., Ibraghimov, I., and Billeter, M. (2003) Optimizing resolution in multidimensional NMR by three-way decomposition. J. Biomol. NMR 27, 165–173.

    Article  PubMed  CAS  Google Scholar 

  98. Gutmanas, A., Jarvoll, P., Orekhov, V. Y., and Billeter, M. (2002) Three-way decomposition of a complete 3D 15N-NOESY-HSQC. J. Biomol. NMR 24, 191–201.

    Article  PubMed  CAS  Google Scholar 

  99. Korzhneva, D. M., Ibraghimov, I. V., Billeter, M., and Orekhov, V. Y. (2001) MUNIN: application of three-way decomposition to the analysis of heteronuclear NMR relaxation data. J. Biomol. NMR 21, 263–268.

    Article  PubMed  CAS  Google Scholar 

  100. Orekhov, V. Y., Ibraghimov, I. V., and Billeter, M. (2001) MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J. Biomol. NMR 20, 49–60.

    Article  PubMed  CAS  Google Scholar 

  101. Damberg, C. S., Orekhov, V. Y., and Billeter, M. (2002) Automated analysis of large sets of heteronuclear correlation spectra in NMR-based drug discovery. J. Med. Chem. 45, 5649–5654.

    Article  PubMed  CAS  Google Scholar 

  102. Deng, Z., Chuaqui, C., and Singh, J. (2004) Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J. Med. Chem. 47, 337–344.

    Article  PubMed  CAS  Google Scholar 

  103. Beger, R. D., Buzatu, D. A., Wilkes, J. G., and Lay, J. O. Jr. (2001) (13)C NMR quantitative spectrometric data-activity relationship (QSDAR) models of steroids binding the aromatase enzyme. J. Chem. Inf. Comput. Sci. 41, 1360–1366.

    PubMed  CAS  Google Scholar 

  104. Beger, R. D., Freeman, J. P., Lay, J. O. Jr., Wilkes, J. G., and Miller, D. W. (2001) Use of 13C NMR spectrometric data to produce a predictive model of estrogen receptor binding activity. J. Chem. Inf. Comput. Sci. 41, 219–224.

    PubMed  CAS  Google Scholar 

  105. Beger, R. D. and Wilkes, J. G. (2001) Developing 13C NMR quantitative spectrometric data-activity relationship (QSDAR) models of steroid binding to the corticosteroid binding globulin. J. Comput. Aided Mol. Des. 15, 659–669.

    Article  PubMed  CAS  Google Scholar 

  106. Beger, R. D., Buzatu, D. A., and Wilkes, J. G. (2002) Combining NMR spectral and structural data to form models of polychlorinated dibenzodioxins, dibenzofurans, and biphenyls binding to the AhR. J. Comput. Aided Mol. Des. 16, 727–740.

    Article  PubMed  CAS  Google Scholar 

  107. Griffin, J. L. (2004) Metabolic profiles to define the genome: can we hear the phenotypes? Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 857–871.

    Article  PubMed  CAS  Google Scholar 

  108. Homans, S. W. (2004) NMR spectroscopy tools for structure-aided drug design. Angew. Chem. Int. Ed. Engl. 43, 290–300.

    Article  PubMed  CAS  Google Scholar 

  109. Pellecchia, M., Sem, D. S., and Wuthrich, K. (2002) NMR in drug discovery. Nat. Rev. Drug Discov. 1, 211–219.

    Article  PubMed  CAS  Google Scholar 

  110. Pellecchia, M., Meininger, D., Dong, Q., Chang, E., Jack, R., and Sem, D. S. (2002) NMR-based structural characterization of large protein-ligand interactions. J. Biomol. NMR 22, 165–173.

    Article  PubMed  CAS  Google Scholar 

  111. Clore, G. M. and Gronenborn, A. M. (1994) Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363.

    Article  PubMed  CAS  Google Scholar 

  112. Meadows, R. P., Nettesheim, D. G., Xu, R. X., et al. (1993) Three-dimensional structure of the FK506 binding protein/ascomycin complex in solution by heteronuclear three-and four-dimensional NMR. Biochemistry 32, 754–765.

    Article  PubMed  CAS  Google Scholar 

  113. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L., and Clardy, J. (1991) Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science 252, 839–842.

    Article  PubMed  Google Scholar 

  114. Van Duyne, G. D., Standaert, R. F., Schreiber, S. L., and Clardy, J. (1991) Atomic structure of the rapamycin human immunophilin FKBP-12 complex. J. Am. Chem. Soc. 113, 7433–7434.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Sillerud, L.O., Larson, R.S. (2006). Nuclear Magnetic Resonance-Based Screening Methods for Drug Discovery. In: Larson, R.S. (eds) Bioinformatics and Drug Discovery. Methods in Molecular Biology, vol 316. Humana Press. https://doi.org/10.1385/1-59259-964-8:227

Download citation

  • DOI: https://doi.org/10.1385/1-59259-964-8:227

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-346-6

  • Online ISBN: 978-1-59259-964-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics