New Strategies in Drug Discovery

  • Eliot H. Ohlstein
  • Anthony G. Johnson
  • John D. Elliott
  • Anne M. Romanic
Part of the Methods in Molecular Biology book series (MIMB, volume 316)


Gene identification followed by determination of the expression of genes in a given disease and understanding of the function of the gene products is central to the drug discovery process. The ability to associate a specific gene with a disease can be attributed primarily to the extraordinary progress that has been made in the areas of gene sequencing and information technologies. Selection and validation of novel molecular targets have become of great importance in light of the abundance of new potential therapeutic drug targets that have emerged from human gene sequencing. In response to this revolution within the pharmaceutical industry, the development of high-throughput methods in both biology and chemistry has been necessitated. Further, the successful translation of basic scientific discoveries into clinical experimental medicine and novel therapeutics is an increasing challenge. As such, a new paradigm for drug discovery has emerged. This process involves the integration of clinical, genetic, genomic, and molecular phenotype data partnered with cheminformatics. Central to this process, the data generated are managed, collated, and interpreted with the use of informatics. This review addresses the use of new technologies that have arisen to deal with this new paradigm.

Key Words

Target validation drug discovery experimental medicine 


  1. 1.
    Vanter, J. C., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.CrossRefGoogle Scholar
  2. 2.
    Lander, E. S., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.PubMedCrossRefGoogle Scholar
  3. 3.
    Venkatesh, T. V., Bowen, B., and Lim, H. A. (1999) Bioinformatics, pharma and farmers. Trends Biotechnol. 17, 85–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Stadel, J. M., Wilson, S., and Bergsma, D. (1997) Orphan G protein-coupled receptors: a neglected opportunity for pioneer drug discovery. Trends Pharmacol. Sci. 18(11), 430–437.PubMedCrossRefGoogle Scholar
  5. 5.
    Ames, R. S., Sarau, H. M., Chambers, J., et al. (1999) Human urotensin-II, the most potent vasoconstrictor identified, is a ligand at the novel receptor GPR-14. Nature 401, 282–286.PubMedCrossRefGoogle Scholar
  6. 6.
    Sakurai, T., Amemiya, A., Ishii, M., et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.PubMedCrossRefGoogle Scholar
  7. 7.
    Lin, L., Faraco, J., Li, R., et al. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376.PubMedCrossRefGoogle Scholar
  8. 8.
    Debouck, C. and Metcalf, B. (2000) The impact of genomics on drug discovery. Annu. Rev. Pharmacol. Toxicol. 40, 193–207.PubMedCrossRefGoogle Scholar
  9. 9.
    Ahlberg, C. (1999) Visual exploration of HTS databases: bridging the gap between chemistry and biology. Drug Discov. Today 4, 370–376.PubMedCrossRefGoogle Scholar
  10. 10.
    Laatsch, A., Ragozin, S., Grewal, T., Beisiegel, U., and Joerg, H. (2004) Differential RNA interference: replacement of endogenous with recombinant low density lipoprotein receptor-related protein (LPR). Eur. J. Cell Biol. 83, 113–120.PubMedCrossRefGoogle Scholar
  11. 11.
    Pederson, T. (2004) RNA interference and mRNA silencing, 2004: how far will they reach? Mol. Biol. Cell 15, 407–410.PubMedCrossRefGoogle Scholar
  12. 12.
    Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730.PubMedGoogle Scholar
  13. 13.
    Kvasnicka, F. (2003) Proteomics: general strategies and application to nutritionally relevant proteins. J. Chromatogr. 787, 77–89.CrossRefGoogle Scholar
  14. 14.
    Marshall, T. and Williams, K. M. (2002) Proteomics and its impact upon biomedical science. Br. J. Biomed. Sci. 59, 47–64.PubMedGoogle Scholar
  15. 15.
    Panisko, E. A., Conrads, T. P., Goshe, M. B., and Veenstra, T. D. (2002) The postgenomic age: characterization of proteomes. Exp. Hematol. 30, 97–107.PubMedCrossRefGoogle Scholar
  16. 16.
    Gerhold, D. L. (2002) Better therapeutics through microarrays. Nat. Genet. 32, S547–S551.CrossRefGoogle Scholar
  17. 17.
    MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763.PubMedGoogle Scholar
  18. 18.
    Witzmann, F. A. and Grant, R. A. (2003) Pharmacoproteomics in drug development. Pharmacogenom. J. 3, 69–76.CrossRefGoogle Scholar
  19. 19.
    He, Q. Y., Yip, T. T., Li, M., and Chiu, J. F. (2003) Proteomic analysis of arsenic-induced cell transformation with SELDI-TOF ProteinChip technology. J. Cell Biochem. 88, 1–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Petricoin, E. F., Ardekani, A., Hitt, B. A., et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577.PubMedCrossRefGoogle Scholar
  21. 21.
    Adams, A. (2003) Metabolomics: small molecule “omics.” Scientist 17, 38–40.Google Scholar
  22. 22.
    Watkins, S. M. and German, J. B. (2002) Toward the implementation of metabolomic assessments of human health and nutrition. Curr. Opin. Biotechnol. 13, 512–516.PubMedCrossRefGoogle Scholar
  23. 23.
    Watkins, S. M. (2004) Lipomic profiling in drug discovery, development and clinical trial evaluation. Curr. Opin. Drug Discov. Dev. 7, 112–117.Google Scholar
  24. 24.
    Watkins, S. M., Hammock, B. D., Newman, J. W., and German, J. B. (2001) Individual metabolism should guide agriculture toward foods for improved health and nutrition. Am. J. Clin. Nutr. 74, 283–286.PubMedGoogle Scholar
  25. 25.
    Watkins, S. M., Lin, T. Y., Davis, R. M., et al. (2001) Unique phospholipid metabolism in mouse heart in response to dietary docosahexaenoic or α-linolenic acids. Lipids 36, 247–254.PubMedCrossRefGoogle Scholar
  26. 26.
    Watkins, S. M., Reifsnyder, P. R., Pan, H., German, J. B., and Leiter, E. H. (2002) Lipid metabolome-wide effects of the PPAR-γ agonist rosiglitozone. J. Lipid Res. 43, 1809–1811.PubMedCrossRefGoogle Scholar
  27. 27.
    Fitzgerald, D. A. (2001) Drug discovery: lipid profiling for studying the metabolome. Gen. Eng. News 21, 32–36.Google Scholar
  28. 28.
    Mazurek, S. and Eigenbrodt, E. (2003) The tumor metabolome. Anticancer Res. 23, 1149–1154.PubMedGoogle Scholar
  29. 29.
    Doherty, A. M., Patt, W. C., Edmunds, J. J., et al. (1995) Discovery of a novel series of orally active non-peptide endothelin-A (ETA) receptor-selective antagonists. J. Med. Chem. 38, 1259–1263.PubMedCrossRefGoogle Scholar
  30. 30.
    Mullin, R. (2004) Drug discovery: as high-throughput screening draws fire, researchers leverage science to put automation into perspective. Chem. Eng. News 82, 23–32.Google Scholar
  31. 31.
    Anonymous. (2000) Computational chemistry. Nat. Biotech. 18, IT50–IT52.CrossRefGoogle Scholar
  32. 32.
    Lee, A. and Breitenbucher, J. G. (2003) The impact of combinatorial chemistry on drug discovery. Curr. Opin. Drug Discov. Dev. 6, 494–508.Google Scholar
  33. 33.
    Dolle, R. E. (2004) Comprehensive survey of combinatorial library synthesis: 2003. J. Comb. Chem. 6, 623–679.PubMedCrossRefGoogle Scholar
  34. 34.
    Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23(1–3), 3–25.CrossRefGoogle Scholar
  35. 35.
    Chin, K. V. and Kong, A. N. T. (2002) Application of DNA microarrays in pharmacogenomics and toxicogenomics. Pharm. Res. 19, 1773–1778.PubMedCrossRefGoogle Scholar
  36. 36.
    Sengupta, L. K., Sengupta, S., and Sarkar, M. (2002) Pharmacogenetic applications of the post genomic era. Curr. Pharm. Biotechnol. 3, 141–150.PubMedCrossRefGoogle Scholar
  37. 37.
    Tugwood, J. D., Hollins, L. E., and Cockerill, M. J. (2003) Genomics and the search for novel biomarkers in toxicology. Biomarkers 8, 79–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Wilson, A. G. E., White, A. C., and Mueller, R. A. (2003) Role of predictive metabolism and toxicity modeling in drug discovery—a summary of some recent advancements. Curr. Opin. Drug Discov. Dev. 6, 123–128.Google Scholar
  39. 39.
    Helma, C. and Kramer, S. (2003) A survey of the predictive toxicology challenge 2000–2001. Bioinformatics 19, 1179–1182.PubMedCrossRefGoogle Scholar
  40. 40.
    Cooper, S., Parisis, K., Day, R. O., and Williams, K. M. (2000) The skin suction blister: a human model of inflammation. Proc. Aust. Soc. Clin. Exp. Pharmacol. Toxicol. 8, 140–147.Google Scholar
  41. 41.
    Follin, P. (1999) Skin chamber technique for study of in vivo excudated human neutrophils. J. Immunol. Methods 232, 55–65.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang, L., Mazurek, T., Zalewski, A. (2005) Regulation of inflammatory responses and matrix degrading activities by p38 MAPK in advanced human atherosclerotic plaque, in press.Google Scholar
  43. 43.
    Roses, A. D. (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat. Rev. Genet. 5, 645–656.PubMedCrossRefGoogle Scholar
  44. 44.
    Hetherington, A., Hughes, A. R., Mosteller, M., et al. (2002) Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359, 1121–1122.PubMedCrossRefGoogle Scholar
  45. 45.
    Lai, E., Bowman, C., Bansal, A., Hughes, A., Mosteller, M., and Roses, A. D. (2002) Medicinal applications of haplotype-based SNP maps: learning to walk before we run. Nat. Genet. 32, 353.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Eliot H. Ohlstein
    • 1
  • Anthony G. Johnson
    • 1
  • John D. Elliott
    • 1
  • Anne M. Romanic
    • 1
  1. 1.CVU CEDD, GlaxoSmithKlineKing of Prussia

Personalised recommendations