Skip to main content

Indirect Somatic Embryogenesis in Cassava for Genetic Modification Purposes

  • Protocol

Part of the Methods in Molecular Biology™ book series (MIMB,volume 318)

Abstract

In cassava both direct and indirect somatic embryogenesis is described. Direct somatic embryogenesis starts with the culture of leaf explants on Murashige and Skoog (MS) medium supplemented with auxins. Somatic embryos undergo secondary somatic embryogenesis when cultured on the same medium.

Indirect somatic embryogenesis is initiated by subculture of directly induced embryogenic tissue on auxin-supplemented medium with Gresshoff and Doy salts and vitamins. A very fine friable embryogenic callus (FEC) is formed after a few rounds of subculture and stringent selection. This FEC is maintained by subculture on auxin supplemented medium. Lowering of the auxin concentration allows the FEC to form mature somatic embryos that develop into plants when transferred to a cytokinin-supplemented medium.

Key Words

  • Direct
  • FEC
  • indirect
  • somatic embryogenesis

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-959-1:101
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-959-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stamp, F. A. and Henshaw, G. G. (1982) Somatic embryogenesis in cassava. Z. Planzenphysiol. 105, 183–187.

    Google Scholar 

  2. Stamp, J. A. and Henshaw, G. G. (1987) Somatic embryogenesis from clonal leaf tissue of cassava. Ann. Bot. 59, 445–450.

    CAS  Google Scholar 

  3. Szabados, L., Hoyos, R., and Roca, W. (1987) In vitro somatic embryogenesis and plant regeneration of cassava. Plant Cell Rep. 6, 248–251.

    CAS  CrossRef  Google Scholar 

  4. Mathews, H., Schöpke, C., Carcamo, R., Chavarriaga, P., Fauquet, C., and Beachy, R. N. (1993) Improvement of somatic embryogenesis and plant regeneration in cassava. Plant Cell Rep. 12, 328–333.

    CrossRef  Google Scholar 

  5. Sudarmonowati, E. and Henshaw, G. G. (1993) The induction of somatic embryogenesis of recalcitrant cassava cultivars using Picloram and Dicamba, in Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network (Roca, W. M. and Thro, A. M., eds.), Centro International de Agricultura Tropical, Cartagena de Indias, Columbia, pp. 128–134.

    Google Scholar 

  6. Raemakers, C. J. J. M., Bessembinder, J., Staritsky, G., Jacobsen, E., and Visser, R. G. F. (1993) Induction, germination and shoot development of somatic embryos in cassava. Plant Cell Tiss. and Org. Cul. 33, 151–156.

    CrossRef  Google Scholar 

  7. Taylor, N. J. and Henshaw, G. G. (1993) The induction of somatic embryogenesis in 15 African and one South American cassava cultivars, in Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network (Roca, W. M. and Thro, A. M., eds.) Centro International de Agricultura Tropical, Cartagena de Indias, Columbia, pp. 229–240

    Google Scholar 

  8. Danso, K. E. and Ford-Lloyd, B. V. (2002) Induction of high frequency somatic embryogenesis in cassava for cryopreservation. Plant Cell Rep. 21, 226–232.

    CAS  CrossRef  Google Scholar 

  9. Stamp, J. A. and Henshaw, G. G. (1987) Secondary somatic embryogenesis and plant regeneration in cassava. Plant Cell Tiss. and Org. Cult. 10, 227–233.

    CAS  CrossRef  Google Scholar 

  10. Raemakers, C. J. J. M., Amati, M., Staritsky, G., Jacobsen, E., and Visser, R.G.F. (1993) Cyclic somatic embryogenesis in cassava. Ann. Bot. 71, 289–294.

    CrossRef  Google Scholar 

  11. Raemakers, C. J. J. M., Schavemaker, C. M., Jacobsen, E., and Visser, R. G. F. (1993) Improvements of cyclic somatic embryogenesis of cassava (Manihot esculenta Crantz). Plant Cell Rep. 12, 226–229.

    CrossRef  Google Scholar 

  12. Li, H. Q., Huang, Y. W., Liang, C. Y., and Guo, J. Y. (1995) Improvement of plant regeneration from secondary somatic embryos of cassava, in Proceedings of second international meeting of cassava biotechnology network, Bogor, Indonesia, 22–26 August, Centro Internacional de Agricultura Tropical, Cali, Columbia, pp. 289–302.

    Google Scholar 

  13. Sofiari, E., Raemakers, C. J. J. M., Kanju, E., et al. (1997), Comparison of NAA and 2,4-D induced somatic embryogenesis in cassava. Plant Cell Tiss. Org. Cult. 50, 45–56.

    CAS  CrossRef  Google Scholar 

  14. Raemakers, C. J. J. M., Jacobsen, E., and Visser, R. G. F. (1997) Micropropagation of Manihot esculenta Crantz (cassava), in Biotechnology in Agriculture and Forestry, vol. 39 (Bajaj, Y. P. S., ed.), Springer Verlag, Berlin, pp. 77–103.

    Google Scholar 

  15. Raemakers, C. J. J. M., Jacobsen, E., and Visser, R. G. F. (1999) Direct, cyclic somatic embryogenesis in cassava for mass production purposes, in Methods in Molecular Biology: Plant Cell and Tissue Culture (Hall, R. D., ed.) Humana Press, Totowa, NJ, pp. 61–71.

    Google Scholar 

  16. Taylor, N. J., Edwards, M. Kiernan, R. J., Davey, C. D. M., Blakesley, D., and Henshaw, G. G. (1996) Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nat. Biotechnol. 14, 726–730.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Schöpke, C., Taylor, N., Carcamo, R., et al. (1996) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nat. Biotechnol. 14, 731–735.

    CrossRef  PubMed  Google Scholar 

  18. Raemakers, C. J. J. M., Sofiari, E., Taylor, N., Henshaw, G. G., Jacobsen, E. and Visser, R. G. F. (1996) Production of transgenic cassava (Manihot esculenta Crantz) plants by particle bombardment using luciferase activity as selection marker. Mol. Breeding 2, 339–349.

    CAS  CrossRef  Google Scholar 

  19. Gonzalez, A. E., Schöpke, C., Taylor, N., Beachy, R. N., and Fauquet C. (1998) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium tumefaciens-mediated transformation of embryogenic suspension cultures. Plant Cell Rep 17, 827–831.

    CAS  CrossRef  Google Scholar 

  20. Schreuder, M. M., Raemakers, C. J. J. M., Jacobsen, E. and Visser, R. G. F. (2001) Efficient production of transgenic plants by Agrobacterium-mediated transformation of cassava. Euphytica 120, 35–42.

    CAS  CrossRef  Google Scholar 

  21. Li, H. Q., Sautter, C., Potrykus, I., and Puonti-Kaerlas, J., (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat. Biotech. 14, 736–740.

    CAS  CrossRef  Google Scholar 

  22. Snepvangers, S. C. H. J., Raemakers, C. J. J. M., Jacobsen, E., and Visser, R. G. F. (1997) Optimization of chemical selection of transgenic friable embryogenic callus of cassava using the luciferase reporter gene system. African Crop Sci. J. 2, 196–200.

    Google Scholar 

  23. Munyikwa, T. R. I., Raemakers, C. J. J. M., Schreuder, M., et al. (1998) Pinpointing towards improved regeneration and transformation of cassava. Plant Sci. 135, 87–101.

    CAS  CrossRef  Google Scholar 

  24. Zhang, P., Potrykus, I., and Puonti-Kaerlas, J. (2000) Efficient production of transgenic plants using negative and positive selection. Trans. Res. 9, 405–415.

    CAS  CrossRef  Google Scholar 

  25. Raemakers, C. J. J. M., Schreuder, M., Suurs, L., et al. (2005) Properties of amylose-free cassava starch, produced by antisense inhibition of granule-bound starch synthase. Nat. Biotech. (submitted).

    Google Scholar 

  26. Zhang, P., Jaynes, J. M., Potrykus, I., Gruisem, W., and Puonti-Kaerlas, J. (2003) Transfer and expression of an artificial storage protein (ASP1) gene in cassava. Trans. Res. 12, 243–250.

    CAS  CrossRef  Google Scholar 

  27. Siritunga, D., Arias-Garcon, D., White, W., and Sayre, R. T. (2004) Overexpression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification. Plant Biotech. J. 2, 37–43.

    CAS  CrossRef  Google Scholar 

  28. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassay with tobacco cultures. Physiol. Plant. 15, 473–497.

    CAS  CrossRef  Google Scholar 

  29. Gresshoff, P. M. and Doy, C.H. (1974) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107, 161–170.

    CrossRef  Google Scholar 

  30. Schenk, R. U. and Hildebrandt, A. C. (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50, 199–204.

    CAS  CrossRef  Google Scholar 

  31. Sarria, R., Torres, E., Chavarriaga, P., and Roca, W. M. (2000) Transgenic plants of cassava with resistance to basta obtained by Agrobacterium-mediated transformation. Plant Cell Rep. 19, 339–344.

    CAS  CrossRef  Google Scholar 

  32. Sofiari, E., Raemakers, C. J. J. M., Bergervoet, J. E. M., Jacobsen, E., and Visser, R. G. F. (1997) Plant regeneration from protoplasts isolated from friable embryogenic callus of cassava. Plant Cell Rep. 18, 159–165.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Raemakers, K., Pereira, I., van Putten, H.K., Visser, R. (2006). Indirect Somatic Embryogenesis in Cassava for Genetic Modification Purposes. In: Loyola-Vargas, V.M., Vázquez-Flota, F. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology™, vol 318. Humana Press. https://doi.org/10.1385/1-59259-959-1:101

Download citation

  • DOI: https://doi.org/10.1385/1-59259-959-1:101

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-547-7

  • Online ISBN: 978-1-59259-959-2

  • eBook Packages: Springer Protocols