Skip to main content

Chromatin Assembly in a Crude Fraction From Yeast Cells

  • Protocol
Yeast Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 313))

  • 5876 Accesses

Abstract

The mechanisms of biological chromatin assembly and their regulation have been studied intensively using cellular extracts, particularly those from the embryonic cells of various metazoans. Here we describe how to prepare and use a crude chromatographic fraction from budding yeast, which also supports biological chromatin assembly. In this system, nucleosomes are assembled by a replication-independent mechanism into physiologically spaced arrays that significantly protect underlying DNA from restriction endonuclease digestion. The formation of correctly spaced nucleosome arrays absolutely requires ATP and exogenous core histones of yeast or Drosophila. We have explored how cell cycle and DNA damage signals affect assembly activity in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mello, J. A. and Almouzni, G. (2001) The ins and outs of nucleosome assembly. Curr. Opin. Genet. Dev. 11, 136–141.

    Article  PubMed  CAS  Google Scholar 

  2. Haushalter, K. A. and Kadonaga, J. T. (2003) Chromatin assembly by DNA-translocating motors. Nat. Rev. Mol. Cell. Biol. 4, 613–620.

    Article  PubMed  CAS  Google Scholar 

  3. Ahmad, K. and Henikoff, S. (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200.

    Article  PubMed  CAS  Google Scholar 

  4. Ray-Gallet, D., Quivy, J. P., Scamps, C., Martini, E. M., Lipinski, M., and Almouzni, G. (2002) HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol. Cell 9, 1091–1100.

    Article  PubMed  CAS  Google Scholar 

  5. Wolffe, A. (1998) Chromatin Structure and Function, 3rd ed., Academic Press, San Diego, CA.

    Google Scholar 

  6. Schultz, M. C. (1999) Chromatin assembly in yeast cell-free extracts. Methods 17, 161–172.

    Article  PubMed  CAS  Google Scholar 

  7. Robinson, K. M. and Schultz, M. C. (2003) Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution system involves antisilencing factor Asf1p and chromodomain protein Chd1p. Mol. Cell. Biol. 23, 7937-7946.

    Google Scholar 

  8. van Holde, K. E. (1988) Chromatin. Springer-Verlag, New York, NY.

    Google Scholar 

  9. Pilon, J., Terrell, A., and Laybourn, P. J. (1997) Yeast chromatin reconstitution system using purified yeast core histones and yeast nucleosome assembly protein-1. Protein Expr. Purif. 10, 132–140.

    Article  PubMed  CAS  Google Scholar 

  10. Dunn, B. and Wobbe, C. R. (1997) Preparation of protein extracts from yeast, in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), John Wiley & Sons Inc., Hoboken, NJ, pp. 13.13.1–13.13.9.

    Google Scholar 

  11. Pazin, M. J., Hermann, J. W., and Kadonaga, J. T. (1998) Promoter structure and transcriptional activation with chromatin templates assembled in vitro. A single Gal4-VP16 dimer binds to chromatin or to DNA with comparable affinity. J. Biol. Chem. 273, 34653–34660.

    Article  PubMed  CAS  Google Scholar 

  12. Jones, E. W. (1991) Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 194, 428–453.

    Article  PubMed  CAS  Google Scholar 

  13. Robinson, K. M. and Schultz, M. C. (2005) Gal4-VP16 directs ATP-independent chromatin reorganization in a yeast chromatin assembly system. Biochemistry 44, 4551–4561.

    Article  PubMed  CAS  Google Scholar 

  14. Kamakaka, R. T., Bulger, M., and Kadonaga, J. T. (1993) Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly. Genes Dev. 7, 1779–1795.

    Article  PubMed  CAS  Google Scholar 

  15. Stuart, D. and Wittenberg, C. (1998) CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev. 12, 2698–2710.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Robinson, K.M., Schultz, M.C. (2006). Chromatin Assembly in a Crude Fraction From Yeast Cells. In: Xiao, W. (eds) Yeast Protocol. Methods in Molecular Biology, vol 313. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-958-3:209

Download citation

  • DOI: https://doi.org/10.1385/1-59259-958-3:209

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-437-1

  • Online ISBN: 978-1-59259-958-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics