Skip to main content

An Introduction to Planar Chromatography

  • Protocol
Natural Products Isolation

Part of the book series: Methods in Biotechnology ((MIBT,volume 20))

Summary

Thin-layer chromatography (TLC) is an easy, cheap, rapid, and widely used method for the analysis and isolation of natural and synthetic products. It has use also in the biological evaluation of organic compounds, particularly in the areas of antimicrobial and antioxidant metabolites, and for the determination of acetylcholine esterase inhibitors that are utilized in the treatment of Alzheimer’s disease. This chapter deals with the basic principles of TLC and describes methods for the analysis and isolation of natural products. Examples of methods for isolation of several classes of natural product are detailed, and protocols for TLC bioassays are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray, A. I. (1993) Quinoline alkaloids related to anthranilic acid. Methods in Plant Biochemistry. vol. 8. Chapter 8, 288. Academic, London.

    Google Scholar 

  2. CRC Handbook of Chemistry and Physics. 72 ed. CRC Press.

    Google Scholar 

  3. Stierle, A., Strobel, G., Stierle, D., Grothaus, P., and Bignami, T. (1995) The search for a Taxol® producing microorganism among the endophytic fungi of the pacific yew Taxus brevifolia. J. Nat. Prod. 58, 1315–1324.

    Article  CAS  Google Scholar 

  4. Staneck, J. L. and Roberts, G. D. (1974). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28, 226–231.

    CAS  Google Scholar 

  5. Waterman, P. G. and Grundon, M. F., eds. (1983) Chemistry and Chemical Taxonomy of the Rutales. Academic, London.

    Google Scholar 

  6. Hegnauer, R. (1989) Chemotaxonomie de Pflanzen. vol. 1–10. Birkhäuser Verlag, Berlin.

    Google Scholar 

  7. Gibbons, S. (1994) Phytochemical studies on the Flacourtiaceae and Simaroubaceae. PhD Thesis, University of Strathclyde.

    Google Scholar 

  8. Wagner, H. and Bladt, S. (1996). Plant Drug Analysis—A Thin Layer Chromatography Atlas. Springer-Verlag, Berlin.

    Google Scholar 

  9. Merck Handbook (1980) Dyeing Reagents for Thin Layer and Paper Chromatography. E. Merck, Darmstadt, Germany.

    Google Scholar 

  10. Gibbons, S., Gray, A. I., Hockless, D. C. R. et al. (1993) Novel D: A friedo-oleanane triterpenes from the stem bark of Phyllobotryon spathulatum. Phytochemistry 34, 273–277.

    Article  CAS  Google Scholar 

  11. Khan, M. R., Gray, A. I., and Waterman, P. G. (1990) Clerodane diterpenes from Zuelania guidonia stem bark. Phytochemistry 29, 2939–2942.

    Article  CAS  Google Scholar 

  12. Ampofo, S. and Waterman, P. G. (1984) Cytotoxic quassinoids from Odyendyea gabonensis stem bark: isolation and high field NMR. Planta. Med. 50, 261–263.

    Article  Google Scholar 

  13. Tyihak, E., Mincsovics, E., and Kalasz, H. (1979) New planar liquid chromatographic technique: overpressured thin layer chromatography. J. Chromatogr. 174, 75–81.

    Article  CAS  Google Scholar 

  14. Nyiredy, S., Dallenbach-Tölke, K., Erdelmeier, C. A. J., Meier, B. and Sticher, O. (1985) Abstracts, 33rd Annual Congress of the Society for Medicinal Plant Research, Regensburg.

    Google Scholar 

  15. Ahsan, M. (1993) PhD Thesis, University of Strathclyde.

    Google Scholar 

  16. Ober, A. G., Fronczek, F. R., and Fischer, N. H. (1985) Sesquiterpene lactones of Calea divaricata and the molecular structure of leptocarpin acetate. J. Nat. Prod. 48, 302.

    Article  CAS  Google Scholar 

  17. Habtemariam, S., Gray, A. I., and Waterman, P. G. (1994) Diterpenes from the leaves of Leonotis ocymifolia var. raineriana. J. Nat. Prod. 57, 1570–1574.

    Article  CAS  Google Scholar 

  18. Jolad, S. D., Hoffmann, J. J., Schram, K. H., Cole, J. R., Bates, R. B., and Tempesta, M. S. (1984) A new diterpene from Cupressus govenia var. abramasiana: 5β-hydroxy-6-oxasugiol (Cupresol). J. Nat. Prod. 47, 983–987.

    Article  CAS  Google Scholar 

  19. Gibbons, S., Gray, A. I., and Waterman, P. G. (1996) Clerodane diterpenes from the bark of Casearia tremula. Phytochemistry 41, 565–570.

    Article  CAS  Google Scholar 

  20. El-Dib, R., Kaloga, M., Mahmoud, I., Soliman, H. S. M., Moharram, F. A., and Kolodziej, H. (2004) Sablacaurin A and B, two 19-nor-3,4-seco-lanostane-type triterpenoids from Sabal causiarum and Sabal blackburniana, respectively. Phytochemistry 65, 1153–1157.

    Article  CAS  Google Scholar 

  21. Roby, M. R. and Stermitz, F. R. (1984) Penstemonoside and other iridoids from Castilleja rhexifolia. Conversion of penstemonoside to the pyridine monoterpene alkaloid rhexifoline. J. Nat. Prod. 47, 854–857.

    Article  CAS  Google Scholar 

  22. Riaz, N., Malik, A., Rehman, A. et al. (2004) Lipoxygenase inhibiting and antioxidant oligostilbene and monoterpene galactoside from Paeonia emodi. Phytochemistry 65, 1129–1135.

    Article  CAS  Google Scholar 

  23. Khan, F., Peter, X. K., Mackenzie, R. M. et al. (2004) Venusol from Gunnera perpensa: structural and activity studies. Phytochemistry 65, 1117–1121.

    Article  CAS  Google Scholar 

  24. Shaari, K. and Waterman, P. G. (1995) Further glucosides and simple iso-coumarins from Homalium longifolium. Nat. Prod. Lett. 7, 243–250.

    CAS  Google Scholar 

  25. Sarker, S. (1994) Phytochemical and chemotaxonomic studies in the tribe Boronieae (Rutaceae). PhD Thesis, University of Strathclyde.

    Google Scholar 

  26. Matsunaga, K., Shibuya, M., and Ohizumi, Y. (1994) Graminone B, a novel lignan with vasodilative activity from Imperata cylindrica. J. Nat. Prod. 57, 1734–1736.

    Article  CAS  Google Scholar 

  27. Evidente, A. and Sparapano, L. (1994) 7′-Hydroxyseiridin and the 7′-hydro-xyisoseiridin, two new phytotoxic Δα, β-butenolids from three species of Seiridium pathogenic to cypresses. J. Nat. Prod. 57, 1720–1725.

    Article  CAS  Google Scholar 

  28. Pairet, L., Wrigley, S. K., Chetland, I. et al. (1995) Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum: taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot. 48, 913–923.

    CAS  Google Scholar 

  29. Brochmann-Hanssen, E. and Cheng, C. Y. (1984) Biosynthesis of a narcotic antagonist: conversion of N-allylnorreticuline to N-allylnormorphine in Papaver somniferum. J. Nat. Prod. 47, 175–176.

    Article  CAS  Google Scholar 

  30. Valencia, E., Weiss, I., Shamma, M. et al. (1984) Dihydrorugosine, a pseudobenzylisoquinoline alkaloid from Berberis darwinii and Berberis actinacantha. J. Nat. Prod. 47, 1050–1051.

    Article  CAS  Google Scholar 

  31. Basa, S. C. and Tripathy, R. N. (1984) A new acridone alkaloid from Citrus decumana. J. Nat. Prod. 47, 325–330.

    Article  CAS  Google Scholar 

  32. Pelletier, S. W., Ying, C. S., Joshi, B. S., and Desai, H.K. (1984) The structures of Forestine and Foresticine, two new C19-diterpenoid alkaloids from Aconitum forrestii stapf. J. Nat. Prod. 47, 474–477.

    Article  CAS  Google Scholar 

  33. Evidente, A., Iasiello, I., and Randazzo, G. (1984) Isolation of Sternbergine, a new alkaloid from the bulbs of Sternbergia lutea. J. Nat. Prod. 47, 1003–1008.

    Article  CAS  Google Scholar 

  34. Lin, L.-Z., Hu, S.-H., Zaw, K. et al. (1994) Thalfaberidine, a cytotoxic aporphine-benzylisoquinoline alkaloid from Thalictrum faberi. J. Nat. Prod. 57, 1430–1436.

    Article  CAS  Google Scholar 

  35. Mahabusarakam, W., Deachathai, S., Phongpaichit, S., Jansakul, C., and Taylor, W. C. (2004) A benzil and isoflavone derivatives from Derris scandens Benth. Phytochemistry 65, 1185–1191.

    Article  CAS  Google Scholar 

  36. Slimestad, R., Andersen, O. M., and Francis, G. W. (1994) Ampelopsin 7-glucoside and other dihydroflavonol 7-glucosides from needles of Picea abies. Phytochemistry 35, 550–552.

    Article  CAS  Google Scholar 

  37. Abegaz, B. M., Bezabeh, M., Alemayehu, G., and Duddeck, H. (1994) Anthraquinones from Senna multigladulosa. Phytochemistry 35, 465–468.

    Article  CAS  Google Scholar 

  38. Yang, C. X., Huang, S. S., Yang, X. P., and Jia, Z. J. (2004) Non-lignans and steroidal saponins from Asparagus gobicus. Planta Med. 70, 446–451.

    Article  CAS  Google Scholar 

  39. Yin, J., Kouda, K., Tezuka, Y. et al. (2004) New diarylheptanoids from the rhizomes of Dioscorea spongiosa and their antiosteoporotic activity. Planta Med. 70, 54–58.

    Article  CAS  Google Scholar 

  40. Erasto, P., Bojase-Moleta, G., and Majinda, R. R. T. (2004) Antimicrobial and antioxidant flavonoids from the root wood of Bolusanthus speciosus. Phytochemistry 65, 875–880.

    Article  CAS  Google Scholar 

  41. Marston, A., Kissling, J., and Hostettmann, K. (2002) A rapid TLC bioautographic method for the detection of acetylcholineesterase and butyrlcholine esterase inhibitors in plants. Phytochem. Anal. 13, 51–54.

    Article  CAS  Google Scholar 

  42. Cole, M. D. (1994) Key antifungal and antibacterial assays—a critical review. Biochem. Syst. Ecol. 22, 837–856.

    Article  CAS  Google Scholar 

  43. Spooner, D. F. and Sykes, G. (1972) Laboratory Assessment of Antibacterial activity. In: Norris J. R., Ribbons D.W. (Eds.), Methods in Microbiology, Vol. 7B. Academic Press, London,. 216–217.

    Google Scholar 

  44. Holt, R. J. (1975) Laboratory tests of antifungal drugs. J. Clin. Pathol. 28, 767–774.

    Article  CAS  Google Scholar 

  45. Rios, J. L., Recio, M. C., and Villar, A. (1988) Screening methods for natural products with antimicrobial activity: a review of the literature. J. Ethnopharmacol. 23, 127–149.

    Article  CAS  Google Scholar 

  46. Homans, A. L. and Fuchs, A. (1970) Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J. Chromatogr. 51, 327–329.

    Article  CAS  Google Scholar 

  47. Betina, V. (1973) Bioautography in paper and thin layer chromatography and its scope in the antibiotic field. J. Chromatogr. 78, 41–51.

    Article  CAS  Google Scholar 

  48. Ieven, M., Vanden Berghe, D. A., Mertens, F., Vlietinck, A., and Lammens, E. (1979) Screening of higher plants for biological activity I. Antimicrobial activity. Planta Med. 36, 311–321.

    Article  CAS  Google Scholar 

  49. Begue, W. J. and Kline, R. M. (1972) The use of tetrazolium salts in bioauto-graphic procedures. J. Chromatogr. 64, 182–184.

    Article  CAS  Google Scholar 

  50. Rahalison, L., Hamburger, M., Hostettmann, K., Monod, M., and Frenk, E. (1991) A bioautographic agar overlay method for the detection of antifungal compounds from higher plants. Phytochem. Anal. 2, 199–203.

    Article  CAS  Google Scholar 

  51. Dellar, J. E., Cole, M. D., Gray, A. I., Gibbons, S., and Waterman, P. G. (1994) Antimicrobial sesquiterpenes from Prostanthera aff. melissifilia and P. rotundifolia. Phytochemistry 36, 957–960.

    Article  CAS  Google Scholar 

  52. Hostettmann, K. and Marston, A. (1994) Search for new antifungal compounds from higher plants. Pure Appl. Chem. 66, 2231–2234.

    Article  CAS  Google Scholar 

  53. Batista, O., Simoes, M. F., Duarte, A., Valdeira, M. L., De la Torre, M. C., and Rodriguez, B. (1995) An antimicrobial abietane from the roots of Plectranthus hereroensis. Phytochemistry 38, 167–169.

    Article  CAS  Google Scholar 

  54. Hamburger, M. O. and Cordell, G. A. (1987) A direct bioautographic TLC assay for compounds possessing antibacterial activity. J. Nat. Prod. 50, 19–22.

    Article  CAS  Google Scholar 

Suggested Readings

  1. Grinberg, N. ed. (1990) Modern Thin Layer Chromatography. Chromatographic Science Series. vol. 52. Marcel Dekker, Inc.

    Google Scholar 

  2. Hostettmann, K., Hostettmann, M., and Marston, A. (1986). Preparative Chromatography Techniques—Applications in Natural Product Isolation. Springer Verlag, Berlin.

    Google Scholar 

  3. Merck Handbook—Dyeing Reagents for Thin Layer and Paper Chromatography (1980) E. Merck, Darmstadt, Germany. (A comprehensive set of spray reagents.).

    Google Scholar 

  4. Touchstone, J. C. and Dobbins, M. F. (1982) Practice of Thin Layer Chromatography. John Wiley and Sons Publishers.

    Google Scholar 

  5. Wagner, H. and Bladt, S. (1996) Plant Drug Analysis—A Thin Layer Chromatography Atlas. Springer-Verlag, Berlin. (The first point of call for anyone interested in TLC of natural products. There are many excellent examples of systems and detection sprays).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa,NJ

About this protocol

Cite this protocol

Gibbons, S. (2006). An Introduction to Planar Chromatography. In: Sarker, S.D., Latif, Z., Gray, A.I. (eds) Natural Products Isolation. Methods in Biotechnology, vol 20. Humana Press. https://doi.org/10.1385/1-59259-955-9:77

Download citation

  • DOI: https://doi.org/10.1385/1-59259-955-9:77

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-447-0

  • Online ISBN: 978-1-59259-955-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics