Skip to main content

Initial and Bulk Extraction

  • Protocol
Natural Products Isolation

Part of the book series: Methods in Biotechnology ((MIBT,volume 20))

Summary

Currently, there is a growing interest in the study of natural products, especially as part of drug discovery programs. Secondary metabolites can be extracted from a variety of natural sources, including plants, microbes, marine animals, insects, and amphibia. This chapter focuses principally on laboratory-scale processes of initial and bulk extraction of natural products from plant and microbial sources. With regard to plant natural products, the steps required for the preparation of the material prior to extraction, including aspects concerning plant selection, collection, identification, drying, and grinding, are detailed. The various methods available for solvent extraction (maceration, percolation, Soxhlet extraction, pressurized solvent extraction, ultrasound-assisted solvent extraction, extraction under reflux, and steam distillation) are reviewed. Further focus is given on the factors that can influence the selection of a method and suitable solvent. Specific extraction protocols for certain classes of compounds are also discussed. Regarding microbial natural products, this chapter covers issues relating to the isolation of microorganisms and presents the extraction methods available for the recovery of metabolites from fermentation broths. Methods of minimizing compound degradation, artifact formation, extract contamination with external impurities, and enrichment of extracts with desired metabolites are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schliemann, W., Yizhong Cai, Y., Degenkolb, T., Schmidt, J., and Corke, H. (2001) Betalains of Celosia argentea. Phytochemistry 58, 159–165.

    Article  CAS  Google Scholar 

  2. Brown, G. D., Liang, G.-Y., and Sy, L.-K. (2003) Terpenoids from the seeds of Artemisia annua. Phytochemistry 64, 303–323.

    Article  CAS  Google Scholar 

  3. Takahashi, H., Hirata, S., Minami, H., and Fukuyama, Y. (2001) Triterpene and flavanone glycoside from Rhododendron simsii. Phytochemistry 56, 875–879.

    Article  CAS  Google Scholar 

  4. Mohagheghzadeh, A., Schmidt, T. J., and Alfermann, A. W. (2002) Arylnaphthalene lignans from in vitro cultures of Linum austriacum. J. Nat. Prod. 65, 69–71.

    Article  CAS  Google Scholar 

  5. Waksmundzka-Hajnos, M., Petruczynik, A., Dragan, A., Wianwska, D., Dawidowicz, A., and Sowa, I. (2004) Influence of the extraction mode on the yield of some furanocoumarins from Pastinaca sativa fruits. J. Chromatogr. B 800, 181–187.

    Article  CAS  Google Scholar 

  6. Benthin, B., Danz, H., and Hamburger, M. (1999) Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 837, 211–219.

    Article  CAS  Google Scholar 

  7. Cottiglia, F., Dhanapal, B., Sticher, O., and Heilmann, J. (2004) New chromanone acids with antibacterial activity from Calophyllum brasiliens. J. Nat. Prod. 67, 537–541.

    Article  CAS  Google Scholar 

  8. Lin, L.-C., Yang, L.-L., and Chou, C.-J. (2003) Cytotoxic naphthoquinones and plumbagic acid glucosides from Plumbago zeylanica. Phytochemistry 62, 619–622.

    Article  CAS  Google Scholar 

  9. Akhtar, M. N., Atta-ur-Rahman, Choudhary, M. I., Sener, B., Erdogan, I., and Tsuda, Y. (2003) New class of steroidal alkaloids from Fritillaria imperialis. Phytochemistry 63, 115–122.

    Article  CAS  Google Scholar 

  10. Zanolari, B., Guilet, D., Marston, A., Queiroz, E. F., Paulo, M. Q., and Hostettmann, K. (2003) Tropane alkaloids from the bark of Erythroxylum vacciniifolium. J. Nat. Prod. 66, 497–502.

    Article  CAS  Google Scholar 

  11. Zhang, X., Yea, W., Zhaoa, S., and Che, C.-T. (2004) Isoquinoline and isoindole alkaloids from Menispermum dauricum. Phytochemistry 65, 929–932.

    Article  CAS  Google Scholar 

  12. Toki, K., Saito, N., Shigihara, A., and Honda, T. (2001) Anthocyanins from the scarlet flowers of Anemone coronaria. Phytochemistry 56, 711–715.

    Article  CAS  Google Scholar 

  13. Kiehlmann, E. and Li, E. P. M. (1995) Isomerisation of dihydroquercetin. J. Nat. Prod. 58, 450–455.

    Article  CAS  Google Scholar 

  14. Sulaiman, M., Martin, M. T., Pais, M., Hadi, H. A., and Awang, K. (1998) Desmosine, an artefact alkaloid from Desmos dumosus. Phytochemistry 49, 2191–2192.

    Article  CAS  Google Scholar 

  15. Salim, A. A., Garson, M. J., and Craik, D. J. (2004) New Alkaloids from Pandanus amaryllifolius. J. Nat. Prod. 67, 54–57.

    Article  CAS  Google Scholar 

  16. Funayama S., Ishibashi M., Ankaru Y., et al. (1989) Novel cytocidal antibiotics, glucopiericidinols A1 and A2. Taxonomy, fermentation, isolation, structure elucidation and biological characteristics. J. Antibiot. 42,1734–1740.

    CAS  Google Scholar 

  17. Cao S., Lee A. S. Y., Huang Y., et al. (2002) Agonodepsides A and B: two new depsides from a filamentous fungus F7524. J. Nat. Prod. 65, 1037–1038.

    Article  CAS  Google Scholar 

  18. Chinworrungsee, M., Kittakoop, P., Isaka, M., Maithip, P., Supothina, S., and Thebtaranonth, Y. (2004) Isolation and structure elucidation of a novel antimalarial macrocyclic polylactone, menisporopsin A, from the fungus Menisporopsis theobromae. J. Nat. Prod. 67, 689–692.

    Article  CAS  Google Scholar 

  19. Machida K., Trifonov I. S., Ayer W. A., et al. (2001) 3(2H)-Benzofuranones and chromanes from liquid cultures of the mycoparasitic fungus Coniothyrium minitans. Phytochemistry 58, 173–177.

    Article  CAS  Google Scholar 

  20. Liu, Z., Jensen, P. R., and Fenical, W. (2003) A cyclic carbonate and related polyketides from a marine-derived fungus of the genus Phoma. Phytochemistry 64, 571–574.

    Article  CAS  Google Scholar 

  21. Shiono, Y., Matsuzaka, R., Wakamatsu, H., Muneta, K., Murayama, T., and Ikeda, M. (2004) Fascicularones A and B from a mycelial culture of Naematoloma fasciculare. Phytochemistry 65, 491–496.

    Article  CAS  Google Scholar 

  22. Yun, B.-S., Lee, I.-K., Cho, Y., Cho, S.-M., and Yoo, I.-D. (2002) New Tricyclic Sesquiterpenes from the fermentation Broth of Stereum hirsutum. J. Nat. Prod. 65, 786–788.

    Article  CAS  Google Scholar 

  23. Gerth, K., Bedorf, N., Irschik, H., Hofle, G., and Reichenbach, H. (1994) The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria) I. Soraphen A1α: fermentation, isolation, biological properties. J. Antibiot. 47, 23–31.

    CAS  Google Scholar 

  24. Demain, A. L. (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 52, 455–463.

    Article  CAS  Google Scholar 

  25. Phillipson, J. D. and Bisset, N. G. (1972) Quaternisation and oxidation of strychnine and brucine during plant extraction. Phytochemistry 11, 2547–2553.

    Article  CAS  Google Scholar 

  26. Lavie, D., Bessalle, R., Pestchanker, M. J., Gottlieb, H. E., Frolow, F., and Giordano, O. S. (1987) Trechonolide A, a new withanolide type from Trechonaetes laciniata. Phytochemistry 26, 1791–1795.

    Article  CAS  Google Scholar 

  27. Banthorpe, D. V. (1991) Classification of terpenoids and general procedures for their characterisation, in Methods in Plant Biochemistry, vol. 7 (Dey, P. M. and Harborne, J. B., eds.) Academic, New York.

    Google Scholar 

Suggested Reading

  1. Bruneton J. (1995) Pharmacognosy, Phytochemistry, Medicinal Plants. Springer-Verlag, Berlin.

    Google Scholar 

  2. Evans W. C. (2002) Trease and Evans’ Pharmacognosy, 15 ed, Bailliere Tindall: London.

    Google Scholar 

  3. Heinrich M., Barnes J., Gibbons S., and Williamson E. M. (2004) Fundamentals of Pharmacognosy and Phytotherapy. Churchill Livingstone, Edinburgh.

    Google Scholar 

  4. Kaufman, P. B., Cseke, L. J., Warber, S., Duje, J. A., and Brielman, H. L. (1999) Natural Products From Plants, CRC Press, Boca Raton

    Google Scholar 

  5. Lancini G. and Lorenzetti R. (1993) Biotechnology of Antibiotics and Other Bioactive Microbial Metabolites. Plenum, New York.

    Google Scholar 

  6. List P. H. and Schmit P. C. (1989) Phytopharmaceutical Technology. Heyden & Son Ltd, London.

    Google Scholar 

  7. Williamson E. M., Okpako D. T., and Evans F. J. (1996) Selection, preparation and pharmacological evaluation of plant material, in Pharmacological Methods in Phytotherapy Research, vol. 1. John Wiley and Sons, Chichester.

    Google Scholar 

  8. Zygmunt, B. and Namiesnik, J. (2003) Preparation of samples of plant material for chromatographic analysis. J. Chromatogr. Sci. 41, 109–116.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa,NJ

About this protocol

Cite this protocol

Seidel, V. (2006). Initial and Bulk Extraction. In: Sarker, S.D., Latif, Z., Gray, A.I. (eds) Natural Products Isolation. Methods in Biotechnology, vol 20. Humana Press. https://doi.org/10.1385/1-59259-955-9:27

Download citation

  • DOI: https://doi.org/10.1385/1-59259-955-9:27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-447-0

  • Online ISBN: 978-1-59259-955-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics