Advertisement

An Introduction to Planar Chromatography

  • Simon Gibbons
Part of the Methods in Biotechnology book series (MIBT, volume 20)

Summary

Thin-layer chromatography (TLC) is an easy, cheap, rapid, and widely used method for the analysis and isolation of natural and synthetic products. It has use also in the biological evaluation of organic compounds, particularly in the areas of antimicrobial and antioxidant metabolites, and for the determination of acetylcholine esterase inhibitors that are utilized in the treatment of Alzheimer’s disease. This chapter deals with the basic principles of TLC and describes methods for the analysis and isolation of natural products. Examples of methods for isolation of several classes of natural product are detailed, and protocols for TLC bioassays are given.

Key Words

Thin-layer chromatography TLC bioassays natural product isolation 

References

  1. 1.
    Gray, A. I. (1993) Quinoline alkaloids related to anthranilic acid. Methods in Plant Biochemistry. vol. 8. Chapter 8, 288. Academic, London.Google Scholar
  2. 2.
    CRC Handbook of Chemistry and Physics. 72 ed. CRC Press.Google Scholar
  3. 3.
    Stierle, A., Strobel, G., Stierle, D., Grothaus, P., and Bignami, T. (1995) The search for a Taxol® producing microorganism among the endophytic fungi of the pacific yew Taxus brevifolia. J. Nat. Prod. 58, 1315–1324.CrossRefGoogle Scholar
  4. 4.
    Staneck, J. L. and Roberts, G. D. (1974). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28, 226–231.Google Scholar
  5. 5.
    Waterman, P. G. and Grundon, M. F., eds. (1983) Chemistry and Chemical Taxonomy of the Rutales. Academic, London.Google Scholar
  6. 6.
    Hegnauer, R. (1989) Chemotaxonomie de Pflanzen. vol. 1–10. Birkhäuser Verlag, Berlin.Google Scholar
  7. 7.
    Gibbons, S. (1994) Phytochemical studies on the Flacourtiaceae and Simaroubaceae. PhD Thesis, University of Strathclyde.Google Scholar
  8. 8.
    Wagner, H. and Bladt, S. (1996). Plant Drug Analysis—A Thin Layer Chromatography Atlas. Springer-Verlag, Berlin.Google Scholar
  9. 9.
    Merck Handbook (1980) Dyeing Reagents for Thin Layer and Paper Chromatography. E. Merck, Darmstadt, Germany.Google Scholar
  10. 10.
    Gibbons, S., Gray, A. I., Hockless, D. C. R. et al. (1993) Novel D: A friedo-oleanane triterpenes from the stem bark of Phyllobotryon spathulatum. Phytochemistry 34, 273–277.CrossRefGoogle Scholar
  11. 11.
    Khan, M. R., Gray, A. I., and Waterman, P. G. (1990) Clerodane diterpenes from Zuelania guidonia stem bark. Phytochemistry 29, 2939–2942.CrossRefGoogle Scholar
  12. 12.
    Ampofo, S. and Waterman, P. G. (1984) Cytotoxic quassinoids from Odyendyea gabonensis stem bark: isolation and high field NMR. Planta. Med. 50, 261–263.CrossRefGoogle Scholar
  13. 13.
    Tyihak, E., Mincsovics, E., and Kalasz, H. (1979) New planar liquid chromatographic technique: overpressured thin layer chromatography. J. Chromatogr. 174, 75–81.CrossRefGoogle Scholar
  14. 14.
    Nyiredy, S., Dallenbach-Tölke, K., Erdelmeier, C. A. J., Meier, B. and Sticher, O. (1985) Abstracts, 33rd Annual Congress of the Society for Medicinal Plant Research, Regensburg.Google Scholar
  15. 15.
    Ahsan, M. (1993) PhD Thesis, University of Strathclyde.Google Scholar
  16. 16.
    Ober, A. G., Fronczek, F. R., and Fischer, N. H. (1985) Sesquiterpene lactones of Calea divaricata and the molecular structure of leptocarpin acetate. J. Nat. Prod. 48, 302.CrossRefGoogle Scholar
  17. 17.
    Habtemariam, S., Gray, A. I., and Waterman, P. G. (1994) Diterpenes from the leaves of Leonotis ocymifolia var. raineriana. J. Nat. Prod. 57, 1570–1574.CrossRefGoogle Scholar
  18. 18.
    Jolad, S. D., Hoffmann, J. J., Schram, K. H., Cole, J. R., Bates, R. B., and Tempesta, M. S. (1984) A new diterpene from Cupressus govenia var. abramasiana: 5β-hydroxy-6-oxasugiol (Cupresol). J. Nat. Prod. 47, 983–987.CrossRefGoogle Scholar
  19. 19.
    Gibbons, S., Gray, A. I., and Waterman, P. G. (1996) Clerodane diterpenes from the bark of Casearia tremula. Phytochemistry 41, 565–570.CrossRefGoogle Scholar
  20. 20.
    El-Dib, R., Kaloga, M., Mahmoud, I., Soliman, H. S. M., Moharram, F. A., and Kolodziej, H. (2004) Sablacaurin A and B, two 19-nor-3,4-seco-lanostane-type triterpenoids from Sabal causiarum and Sabal blackburniana, respectively. Phytochemistry 65, 1153–1157.CrossRefGoogle Scholar
  21. 21.
    Roby, M. R. and Stermitz, F. R. (1984) Penstemonoside and other iridoids from Castilleja rhexifolia. Conversion of penstemonoside to the pyridine monoterpene alkaloid rhexifoline. J. Nat. Prod. 47, 854–857.CrossRefGoogle Scholar
  22. 22.
    Riaz, N., Malik, A., Rehman, A. et al. (2004) Lipoxygenase inhibiting and antioxidant oligostilbene and monoterpene galactoside from Paeonia emodi. Phytochemistry 65, 1129–1135.CrossRefGoogle Scholar
  23. 23.
    Khan, F., Peter, X. K., Mackenzie, R. M. et al. (2004) Venusol from Gunnera perpensa: structural and activity studies. Phytochemistry 65, 1117–1121.CrossRefGoogle Scholar
  24. 24.
    Shaari, K. and Waterman, P. G. (1995) Further glucosides and simple iso-coumarins from Homalium longifolium. Nat. Prod. Lett. 7, 243–250.Google Scholar
  25. 25.
    Sarker, S. (1994) Phytochemical and chemotaxonomic studies in the tribe Boronieae (Rutaceae). PhD Thesis, University of Strathclyde.Google Scholar
  26. 26.
    Matsunaga, K., Shibuya, M., and Ohizumi, Y. (1994) Graminone B, a novel lignan with vasodilative activity from Imperata cylindrica. J. Nat. Prod. 57, 1734–1736.CrossRefGoogle Scholar
  27. 27.
    Evidente, A. and Sparapano, L. (1994) 7′-Hydroxyseiridin and the 7′-hydro-xyisoseiridin, two new phytotoxic Δα, β-butenolids from three species of Seiridium pathogenic to cypresses. J. Nat. Prod. 57, 1720–1725.CrossRefGoogle Scholar
  28. 28.
    Pairet, L., Wrigley, S. K., Chetland, I. et al. (1995) Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum: taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot. 48, 913–923.Google Scholar
  29. 29.
    Brochmann-Hanssen, E. and Cheng, C. Y. (1984) Biosynthesis of a narcotic antagonist: conversion of N-allylnorreticuline to N-allylnormorphine in Papaver somniferum. J. Nat. Prod. 47, 175–176.CrossRefGoogle Scholar
  30. 30.
    Valencia, E., Weiss, I., Shamma, M. et al. (1984) Dihydrorugosine, a pseudobenzylisoquinoline alkaloid from Berberis darwinii and Berberis actinacantha. J. Nat. Prod. 47, 1050–1051.CrossRefGoogle Scholar
  31. 31.
    Basa, S. C. and Tripathy, R. N. (1984) A new acridone alkaloid from Citrus decumana. J. Nat. Prod. 47, 325–330.CrossRefGoogle Scholar
  32. 32.
    Pelletier, S. W., Ying, C. S., Joshi, B. S., and Desai, H.K. (1984) The structures of Forestine and Foresticine, two new C19-diterpenoid alkaloids from Aconitum forrestii stapf. J. Nat. Prod. 47, 474–477.CrossRefGoogle Scholar
  33. 33.
    Evidente, A., Iasiello, I., and Randazzo, G. (1984) Isolation of Sternbergine, a new alkaloid from the bulbs of Sternbergia lutea. J. Nat. Prod. 47, 1003–1008.CrossRefGoogle Scholar
  34. 34.
    Lin, L.-Z., Hu, S.-H., Zaw, K. et al. (1994) Thalfaberidine, a cytotoxic aporphine-benzylisoquinoline alkaloid from Thalictrum faberi. J. Nat. Prod. 57, 1430–1436.CrossRefGoogle Scholar
  35. 35.
    Mahabusarakam, W., Deachathai, S., Phongpaichit, S., Jansakul, C., and Taylor, W. C. (2004) A benzil and isoflavone derivatives from Derris scandens Benth. Phytochemistry 65, 1185–1191.CrossRefGoogle Scholar
  36. 36.
    Slimestad, R., Andersen, O. M., and Francis, G. W. (1994) Ampelopsin 7-glucoside and other dihydroflavonol 7-glucosides from needles of Picea abies. Phytochemistry 35, 550–552.CrossRefGoogle Scholar
  37. 37.
    Abegaz, B. M., Bezabeh, M., Alemayehu, G., and Duddeck, H. (1994) Anthraquinones from Senna multigladulosa. Phytochemistry 35, 465–468.CrossRefGoogle Scholar
  38. 38.
    Yang, C. X., Huang, S. S., Yang, X. P., and Jia, Z. J. (2004) Non-lignans and steroidal saponins from Asparagus gobicus. Planta Med. 70, 446–451.CrossRefGoogle Scholar
  39. 39.
    Yin, J., Kouda, K., Tezuka, Y. et al. (2004) New diarylheptanoids from the rhizomes of Dioscorea spongiosa and their antiosteoporotic activity. Planta Med. 70, 54–58.CrossRefGoogle Scholar
  40. 40.
    Erasto, P., Bojase-Moleta, G., and Majinda, R. R. T. (2004) Antimicrobial and antioxidant flavonoids from the root wood of Bolusanthus speciosus. Phytochemistry 65, 875–880.CrossRefGoogle Scholar
  41. 41.
    Marston, A., Kissling, J., and Hostettmann, K. (2002) A rapid TLC bioautographic method for the detection of acetylcholineesterase and butyrlcholine esterase inhibitors in plants. Phytochem. Anal. 13, 51–54.CrossRefGoogle Scholar
  42. 42.
    Cole, M. D. (1994) Key antifungal and antibacterial assays—a critical review. Biochem. Syst. Ecol. 22, 837–856.CrossRefGoogle Scholar
  43. 43.
    Spooner, D. F. and Sykes, G. (1972) Laboratory Assessment of Antibacterial activity. In: Norris J. R., Ribbons D.W. (Eds.), Methods in Microbiology, Vol. 7B. Academic Press, London,. 216–217.Google Scholar
  44. 44.
    Holt, R. J. (1975) Laboratory tests of antifungal drugs. J. Clin. Pathol. 28, 767–774.CrossRefGoogle Scholar
  45. 45.
    Rios, J. L., Recio, M. C., and Villar, A. (1988) Screening methods for natural products with antimicrobial activity: a review of the literature. J. Ethnopharmacol. 23, 127–149.CrossRefGoogle Scholar
  46. 46.
    Homans, A. L. and Fuchs, A. (1970) Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J. Chromatogr. 51, 327–329.CrossRefGoogle Scholar
  47. 47.
    Betina, V. (1973) Bioautography in paper and thin layer chromatography and its scope in the antibiotic field. J. Chromatogr. 78, 41–51.CrossRefGoogle Scholar
  48. 48.
    Ieven, M., Vanden Berghe, D. A., Mertens, F., Vlietinck, A., and Lammens, E. (1979) Screening of higher plants for biological activity I. Antimicrobial activity. Planta Med. 36, 311–321.CrossRefGoogle Scholar
  49. 49.
    Begue, W. J. and Kline, R. M. (1972) The use of tetrazolium salts in bioauto-graphic procedures. J. Chromatogr. 64, 182–184.CrossRefGoogle Scholar
  50. 50.
    Rahalison, L., Hamburger, M., Hostettmann, K., Monod, M., and Frenk, E. (1991) A bioautographic agar overlay method for the detection of antifungal compounds from higher plants. Phytochem. Anal. 2, 199–203.CrossRefGoogle Scholar
  51. 51.
    Dellar, J. E., Cole, M. D., Gray, A. I., Gibbons, S., and Waterman, P. G. (1994) Antimicrobial sesquiterpenes from Prostanthera aff. melissifilia and P. rotundifolia. Phytochemistry 36, 957–960.CrossRefGoogle Scholar
  52. 52.
    Hostettmann, K. and Marston, A. (1994) Search for new antifungal compounds from higher plants. Pure Appl. Chem. 66, 2231–2234.CrossRefGoogle Scholar
  53. 53.
    Batista, O., Simoes, M. F., Duarte, A., Valdeira, M. L., De la Torre, M. C., and Rodriguez, B. (1995) An antimicrobial abietane from the roots of Plectranthus hereroensis. Phytochemistry 38, 167–169.CrossRefGoogle Scholar
  54. 54.
    Hamburger, M. O. and Cordell, G. A. (1987) A direct bioautographic TLC assay for compounds possessing antibacterial activity. J. Nat. Prod. 50, 19–22.CrossRefGoogle Scholar

Suggested Readings

  1. 1.
    Grinberg, N. ed. (1990) Modern Thin Layer Chromatography. Chromatographic Science Series. vol. 52. Marcel Dekker, Inc.Google Scholar
  2. 2.
    Hostettmann, K., Hostettmann, M., and Marston, A. (1986). Preparative Chromatography Techniques—Applications in Natural Product Isolation. Springer Verlag, Berlin.Google Scholar
  3. 3.
    Merck Handbook—Dyeing Reagents for Thin Layer and Paper Chromatography (1980) E. Merck, Darmstadt, Germany. (A comprehensive set of spray reagents.).Google Scholar
  4. 4.
    Touchstone, J. C. and Dobbins, M. F. (1982) Practice of Thin Layer Chromatography. John Wiley and Sons Publishers.Google Scholar
  5. 5.
    Wagner, H. and Bladt, S. (1996) Plant Drug Analysis—A Thin Layer Chromatography Atlas. Springer-Verlag, Berlin. (The first point of call for anyone interested in TLC of natural products. There are many excellent examples of systems and detection sprays).Google Scholar

Copyright information

© Humana Press Inc., Totowa,NJ 2006

Authors and Affiliations

  • Simon Gibbons
    • 1
  1. 1.Centre for Pharmacognosy and Phytotherapy, The School of PharmacyUniversity of LondonLondonUK

Personalised recommendations