Dereplication and Partial Identification of Compounds

  • Laurence Dinan
Part of the Methods in Biotechnology book series (MIBT, volume 20)

Summary

This review summarizes the advances in dereplication technology since 1998, its current status, and the prospects for future development. Developments are being driven by the need to identify novel pharmaceutical and agrochemical lead compounds rapidly and effectively from complex natural matrices, while avoiding spending time or money on the re-isolation and re-identification of known natural products. As many commercial pharmaceuticals and agro-chemicals are at least derived from natural products, and only a small proportion of organisms has yet been examined for biologically active compounds, there is still enormous potential for the identification of many novel agents. In conjunction with modern screening methods, dereplication strategies must have high resolution, be sensitive, rapid, reproducible, and robust. Further, they must include effective data processing and information retrieval systems to permit comparison with internal and external sources of information on known compounds.

Key Words

Dereplication screening natural products agrochemicals pharmaceuticals 

References

  1. 1.
    Jia, Q. (2003) Generating and screening a natural product library for cyclooxygenase and lipoxygenase dual inhibitors, in Studies in Natural Products Chemistry, vol. 29 (Atta-ur-Rahman, ed.), Elsevier, pp. 643–718.Google Scholar
  2. 2.
    Colquhoun, J. A., Zulu, J., Goodfellow, M., Horikoshi, K., Ward, A. C., and Bull, A. T. (2000) Rapid characterisation of deep-sea actinomycetes for biotechnology screening programmes. Antonie van Leeuwenhoek 77, 359–367.CrossRefGoogle Scholar
  3. 3.
    Ramakrishna, N. V. S., Nadkarni, S. R., Bhat, R. G., Naker, S. D., Kumar, E. K. S. V., and Lal, B. (1999) Screening of natural product extracts for antibacterial activity: early identification and elimination of known compounds by dereplication. Ind. J. Chem. 38B, 1384–1387.Google Scholar
  4. 4.
    Van Middlesworth, F. and Cannell, R. J. P. (1998) Dereplication and partial identification of natural products. Methods Biotechnol. 4, 279–327.CrossRefGoogle Scholar
  5. 5.
    Newman, D. J., Cragg, G. M., and Snader, K. M. (2000) The influence of natural products upon drug discovery. Nat. Prod. Rep. 17, 215–234.CrossRefGoogle Scholar
  6. 6.
    Cordell, G. A. and Shin, Y. G. (1999) Finding the needle in the haystack. The dereplication of natural product extracts. Pure Appl. Chem. 71, 1089–1094.CrossRefGoogle Scholar
  7. 7.
    Bull, A. T., Ward, A. C., and Goodfellow, M. (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol. Mol. Biol. Rev. 64, 573–606.CrossRefGoogle Scholar
  8. 8.
    Strobel, G. A. (2002) Useful products from rainforest microorganisms. Part 2. Unique bioactive molecules from endophytes. Agro-Food-Ind. Hi-tech. 13, 12–17.Google Scholar
  9. 9.
    Baloglu, E. and Kingston, D. G. I. (1999) The taxane diterpenoids. J. Nat. Prod. 62, 1448–1472.CrossRefGoogle Scholar
  10. 10.
    Gloer, J. B. (1995) The chemistry of fungal antagonism and defense. Can. J. Bot. 73, S1265–S1274.CrossRefGoogle Scholar
  11. 11.
    Nielsen, K. F., Larsen, T. O., and Frisvad, J. C. (2004) Lightweight expanded clay aggregates (LECA), a new up-scaleable matrix for production of microfungal metabolites. J. Antibiot. 57, 29–36.Google Scholar
  12. 12.
    Kim, S.W., Ban, S.H., Chung, H.J. et al. (2004) Taxonomic discrimination of higher plants by pyrolyis mass spectrometry. Plant Cell Reports 22, 519–522.CrossRefGoogle Scholar
  13. 13.
    Brandão, P. F. B., Torimura, M., Kurane, R., and Bull, A. T. (2002) Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Appl. Microbiol. Biotechnol. 58, 77–83.CrossRefGoogle Scholar
  14. 14.
    Ritacco, F. V., Haltli, B., Janso, J. E., Greenstein, M., and Bernan, V. S. (2003) Dereplication of Streptomyces soil isolates and detection of specific biosynthetic genes using an automated ribotyping instrument. J. Ind. Microbiol. Biotechnol. 30, 472–479.CrossRefGoogle Scholar
  15. 15. Cordell, G. A. (2000) Biodiversity and drug discovery—a symbiotic relationship Phytochemistry 55, 463–480.CrossRefGoogle Scholar
  16. 16.
    Donadio, S., Monciardini, P., Alduina, R. et al. (2002) Microbial technologies for the discovery of novel bioactive metabolites. J. Biotechnol. 99, 187–198.CrossRefGoogle Scholar
  17. 17.
    Knight, V., Sanglier, J.-J., DiTullio, D. et al. (2003) Diversifying microbial natural products for drug discovery. Appl. Microbiol. Biotechnol. 62, 446–458.CrossRefGoogle Scholar
  18. 18.
    Clément, C. Y., Bradbrook, D. A., Lafont, R., and Dinan, L. (1993) Assessment of a microplate-based bioassay for the detection of ecdysteroid-like or antiecdysteroid activities. Insect. Biochem. Mol. Biol. 23, 187–193.CrossRefGoogle Scholar
  19. 19.
    Dinan, L., Savchenko, T., Whiting, P., and Sarker, S. D. (1999) Plant natural products as insect steroid receptor agonists and antagonists. Pestic. Sci. 55, 331–335.CrossRefGoogle Scholar
  20. Dinan, L. (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57, 325–339.CrossRefGoogle Scholar
  21. 21.
    Dinan, L. (2003) Ecdysteroid structure-activity relationships, in Studies in Natural Products Chemistry, vol. 29 (Atta-ur-Rahman, ed.), Elsevier, Amsterdam, pp. 3–71.Google Scholar
  22. 22.
    Dinan, L. and Hormann, R. E. (2005) Ecdysteroid agonists and antagonists, in Comprehensive Molecular Insect Science, vol. 3 (Gilbert, L. I., Iatrou, K., and Gill, S. S., eds.), Elsevier/Pergamon, Oxford, pp. 197–242.CrossRefGoogle Scholar
  23. 23.
    Antonio, J. and Molinski, T. F. (1993) Screening of marine invertebrates for the presence of ergosterol-sensitive antifungal compounds. J. Nat. Prod. 56, 54–61.CrossRefGoogle Scholar
  24. 24.
    Umezawa, Y. (2002) Assay screening methods for bioactive substances based on cellular signalling pathways. Rev. Mol. Biotechnol. 82, 357–370.CrossRefGoogle Scholar
  25. 25.
    Ingkaninan, K., Hazelkamp, A., Hoek, A. C., Balconi, S., and Verpoorte, R. (2000) Application of centrifugal partition chromatography in a general separation and dereplication procedure for plant extracts. J. Liq. Chroma-togr. Rel. Technol. 23, 2195–2208.CrossRefGoogle Scholar
  26. 26.
    Alvi, K. A., Peterson, J., and Hofmann, B. (1995) Rapid identification of elaiophylin and geldanamycin in Streptomyces fermentation broths using CPC coupled with a photodiode array detector and LC-MS methodologies J. Ind Microbiol. 15, 80–84.CrossRefGoogle Scholar
  27. 27.
    Cardellina, J.H., Munro, M.H.G., Fuller, R.W. et al. (1993) A chemical screening strategy for the dereplication and prioritization of HIV-inhibitory aqueous natural products extracts. J. Nat. Prod. 56, 1123–1129.CrossRefGoogle Scholar
  28. 28.
    Hamburger, M. O. and Cordell, G. A. (1987) A direct bioautographic TLC assay for compounds possessing antibacterial activity. J. Nat. Prod. 50, 19–22.CrossRefGoogle Scholar
  29. 29.
    Chung, M.-S., Kim, N.-C., Long, L. et al. (1997) Dereplication of saccharide and polyol constituents of candidate sweet-tasting plants: isolation of the sesquiterpene glycoside mukurozioside IIb as a sweet principle of Sapindus rarak. Phytochem. Anal. 8, 49–54.CrossRefGoogle Scholar
  30. 30.
    Dinan, L., Whiting, P., Girault, J.-P. et al. (1997) Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. Biochem. J. 327, 643–650.Google Scholar
  31. 31.
    Dinan, L., Harmatha, J., and Lafont, R. (1997) Chromatographic procedures for the isolation of plant steroids. J. Chromatogr. 935, 105–123.CrossRefGoogle Scholar
  32. 32.
    Lafont, R., Harmatha, J., Marion-Poll, F., Dinan, L., and Wilson, I.D. (2003) Ecdybase [The Ecdysone Handbook, 3 ed.] (http://ecdybase.org).
  33. 33.
    Dinan, L., Sarker, S. D., Bourne, P., Whiting, P., Šik, V., and Rees, H. H. (1999) Phytoecdysteroids in seeds and plants of Rhagodia baccata (Labill.) Moq. (Chenopodiaceae). Arch. Insect Biochem. Physiol. 41, 18–23.CrossRefGoogle Scholar
  34. 34.
    Dinan, L. (1995) A strategy for the identification of ecdysteroid receptor agonists and antagonists from plants. Eur. J. Entomol. 92, 271–283.Google Scholar
  35. 35.
    Girault, J.-P. (1998) Determination of ecdysteroids structure by 1D and 2D NMR Russian J. Plant Physiol. 45, 306–309.Google Scholar
  36. 36.
    Tomás-Barberán, F. A. (1995) Capillary electrophoresis: a new technique in the analysis of plant secondary metabolites. Phytochem. Anal. 6, 177–192.CrossRefGoogle Scholar
  37. 37.
    Strege, M. A. (1999) High-performance liquid chromatographic-electrospray ionization mass spectrometric analyses for the integration of natural products with modern high-throughput screening. J. Chromatogr. B 725, 67–78.CrossRefGoogle Scholar
  38. 38.
    Wolfender, J.-L., Terreaux, C., and Hostettmann, K. (2000) The importance of LC-MS and LC-NMR in the discovery of new lead compounds from plants Phamaceut. Biol. 38(supp), 41–54.Google Scholar
  39. 39.
    Hostettmann, K., Wolfender, J.-L., and Terreaux, C. (2001) Modern screening techniques for plant extracts. Pharmaceut. Biol. 39(supp), 18–32.CrossRefGoogle Scholar
  40. 40.
    Wolfender, J.-L., Ndjoko, K., and Hostettmann, K. (2003) Liquid chroma-tography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J. Chromatogr. A. 1000, 437–455.CrossRefGoogle Scholar
  41. 41.
    Corley, D. G. and Durley, R. C. (1994) Strategies for database dereplication of natural products. J. Nat. Prod. 57, 1484–1490.CrossRefGoogle Scholar
  42. 42.
    Potterat, O., Wagner, K., and Haag, H. (2000) Liquid chromatography-electrospray time-of-flight mass spectrometry for on-line accurate mass determination and identification of cyclodepsipeptides in a crude extract of the fungus Metarrhizium anisopliae. J. Chromatogr. A 872, 85–90.CrossRefGoogle Scholar
  43. 43.
    Waridel, P., Wolfender, J.-L., Ndjoko, K., Hobby, K. R., Major, H. J., and Hostettmann, K. (2001) Evaluation of quadrupole time-of-flight tandem mass spectrometry and ion-trap multiple-stage mass spectrometry for the differentiation of C-glycosidic flavonoid isomers. J. Chromatogr. A 926, 29–41.CrossRefGoogle Scholar
  44. 44.
    Nielsen, K. F. and Smedsgaard, J. (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J. Chromatogr. A 1002, 111–136.CrossRefGoogle Scholar
  45. 45.
    Stefanowicz, P., Prasain, J. K., Yeboah, K. F., and Konishi, Y. (2001) Detection and partial structure elucidation of basic taxoids from Taxus wallichiana by electrospray ionization tandem mass spectrometry Anal. Chem. 73, 3583–3589.CrossRefGoogle Scholar
  46. 46.
    Tian, Q. and Schwartz, S. J. (2003) Mass spectrometry and tandem mass spectrometry of citrus limonoids. Anal. Chem. 75, 5451–5460.CrossRefGoogle Scholar
  47. 47.
    Wolfender, J.-L., Waridel, P., Ndjoko, K., Hobby, K. R., Major, H. J., and Hostettmann, K. (2000) Evaluation of Q-TOF-MS/MS and multiple stage IT-MSn for the dereplication of flavonoids and related compounds in crude plant extracts. Analusis 28, 895–906.CrossRefGoogle Scholar
  48. 48.
    Gilbert, J. R., Lewer, P., Duebelbeis, D. O., Carr, A. W., Snipes, C. E., and Williamson, R. T. (2003) Identification of biologically active compounds from nature using liquid chromatography/mass spectrometry. ACS Symp. Ser. 850, 52–65.CrossRefGoogle Scholar
  49. 49.
    Shin, Y.G., Cordell, G.A., Dong, Y. et al. (1999) Rapid identification of cytotoxic alkenyl catechols in Semecarpus anacardium using bioassay-linked high performance liquid chromatography-electrospray/mass spectrometric analysis. Phytochem. Anal. 10, 208–212.CrossRefGoogle Scholar
  50. 50.
    Shin, Y. G. and van Breemen, R. B. (2001) Analysis and screening of combinatorial libraries using mass spectrometry. Biopharm. Drug Dispos. 22, 353–372.CrossRefGoogle Scholar
  51. 51.
    Gautschi, J. T., Amagata, T., Amagato, A., Valeriote, F. A., Mooberry, S. L., and Crews, P. (2004) Expanding the strategies in natural product studies of marine-derived fungi: a chemical investigation of Penicillium obtained from deep water sediment. J. Nat. Prod. 67, 362–367.CrossRefGoogle Scholar
  52. 52.
    Bily, A.C., Burt, A.J., Ramputh, A.L., et al. (2004) HPLC-PAD-APCI/MS assay of phenylpropanoids in cereals. Phytochem. Anal. 15, 9–15.CrossRefGoogle Scholar
  53. 53.
    Wolfender, J.-L., Ndjoko, K., and Hostettmann, K. (2001) The potential of LC-NMR in phytochemical analysis. Phytochem. Anal. 12, 2–22.CrossRefGoogle Scholar
  54. 54.
    Wilson, I. D. (2001) Chromatography with spectroscopy on line, can you have it all? CAST 10–13.Google Scholar
  55. 55.
    Bobzin, S. C., Yang, S., and Kasten, T. P. (2000) LC-NMR: a new tool to expedite the dereplication and identification of natural products. J. Ind. Microbiol. Biotechnol. 25, 342–345.CrossRefGoogle Scholar
  56. 56.
    Bobzin, S. C., Yang, S., and Kasten, T. P. (2000) Application of liquid chromatography-nuclear magnetic resonance spectroscopy to the identification of natural products. J. Chromatogr. B 748, 259–267.CrossRefGoogle Scholar
  57. 57.
    Williamson, R.T., Chapin, E.L., Carr, A.W., et al. (2000) New diffusion-edited NMR experiments to expedite the dereplication of known compounds from natural product mixtures. Org. Lett. 2, 289–292.CrossRefGoogle Scholar
  58. 58.
    Stessman, C. C., Ebel, R., Corvino, A. J., and Crews, P. (2002) Employing dereplication and gradient 1D NMR methods to rapidly characterize sponge-derived sesterterpenes. J. Nat. Prod. 65, 1183–1186.CrossRefGoogle Scholar
  59. 59.
    Pauli, G. F., Kukzkowiak, U., and Nahrstedt, A. (1999) Solvent effects in the structure dereplication of caffeoyl quinic acids. Magn. Reson. Chem. 37, 827–836.CrossRefGoogle Scholar
  60. 60.
    Bradshaw, J., Butina, D., Dunn, A.J. et al. (2001) A rapid and facile method for the dereplication of purified natural products. J. Nat. Prod. 64, 1541–1544.CrossRefGoogle Scholar
  61. 61.
    Schobel, U., Frenay, M., Van Elswijk, D.A. et al. (2001) High resolution screening of plant natural product extracts for estrogen receptor α and β binding activity using an online HPLC-MS biochemical detection system. J. Biomol. Screening 6, 291–303.Google Scholar
  62. 62.
    van Elswijk, D. A., Schobel, U. P., Lansky, E. P., Irth, H., and van der Greef, J. (2004) Rapid dereplication of estrogenic compounds in pomegranate (Punica granatum) using on-line biochemical detection coupled to mass spectrometry. Phytochemistry 65, 233–241.CrossRefGoogle Scholar
  63. 63.
    Schenk, T., Breel, G.J., Koevoets, P. et al. (2003) Screening of natural products extracts for the presence of phosphodiesterase inhibitors using liquid chromatography coupled online to parallel biochemical detection and chemical characterization. J. Biomol. Screening 8, 421–429.CrossRefGoogle Scholar
  64. 64.
    Schenk, T., Appels, N. M. G. M., van Elswijk, D. A., Irth, H., Tjaden, U. R., and van der Greef, J. (2003) A generic assay for phosphate-consuming or releasing enzymes coupled on-line to liquid chromatography for lead finding in natural products. Anal. Biochem. 316, 118–126.CrossRefGoogle Scholar
  65. 65.
    Wilson, I. D. (2000) Multiple hyphenation of liquid chromatography with nuclear magnetic resonance spectroscopy, mass spectrometry and beyond. J. Chromatogr. 892, 315–327.CrossRefGoogle Scholar
  66. 66.
    Guttman, A., Khandurina, J., Budworth, P., Xu, W., Hou, Y.-M., and Wang, X. (2004) Analysis of combinatorial natural products by HPLC and CE. LC. GC Europe 17, 104–111.Google Scholar

Copyright information

© Humana Press Inc., Totowa,NJ 2006

Authors and Affiliations

  • Laurence Dinan
    • 1
  1. 1.Inse Biochemistry Group, Hatherly LaboratoriesUniversity of ExeterExeterUK

Personalised recommendations