Skip to main content

Measurement of Ca2+-ATPase Activity (in PMCA and SERCA1)

  • Protocol
Calcium Signaling Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 312))

  • 923 Accesses

Abstract

Ca2+-ATP pumps play a vital role in intracellular calcium homeostasis and signaling. They remove excess Ca2+ from the cytoplasm, either into the lumen of the intracellular sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) network or out of the cell, and fine-tune local calcium concentrations allowing for proper functioning of a variety of Ca2+-dependent reactions. They are also integral components of Ca2+-dependent cellular events and cascades that are regulated by precisely controlled Ca2+ concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niggli, V., Penniston, J. T., and Carafoli, E. (1979) Purification of the (Ca2+ + Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J. Biol. Chem. 254, 9955–9958.

    CAS  PubMed  Google Scholar 

  2. Gietzen, K., Tejcka, M., and Wolf, H. V. (1980) Calmodulin affinity chromatography yields a functional purified erythrocyte (Ca2+ + Mg2+)-dependent adenosine triphosphatase. Biochem. J. 189, 81–88.

    CAS  PubMed  Google Scholar 

  3. Kosk-Kosicka, D., Scaillet, S., and Inesi, G. (1986) The partial reactions in the catalytic cycle of the calcium-dependent adenosine triphosphatase purified from erythrocyte membranes. J. Biol. Chem. 261, 3333–3338.

    CAS  PubMed  Google Scholar 

  4. Missiaen, L., Raeymaekers, L., Wuytack, F., Vrolix, M., DeSmedt, H., and Casteels, R. (1989) Phospholipid-protein interactions of the plasma-membrane Ca2+-transporting ATPase. Biochem. J. 263, 687–694.

    CAS  PubMed  Google Scholar 

  5. Kosk-Kosicka, D. and Zylinska, L. (1997) Protein kinase and calmodulin effects on the plasma membrane Ca2+-ATPase from excitable and nonexcitable cells. Mol. Cell. Biochem. 173, 79–87.

    Article  CAS  PubMed  Google Scholar 

  6. Kosk-Kosicka, D. and Bzdega, T. (1988) Activation of the erythrocyte Ca2+-ATPase by either self-association or interaction with calmodulin. J. Biol. Chem. 263, 18,184–18,189.

    CAS  PubMed  Google Scholar 

  7. Kosk-Kosicka, D., Bzdega, T., and Wawrzynow, A. (1989) Fluorescence energy transfer studies of purified erythrocyte Ca2+-ATPase. J. Biol. Chem. 264, 19,495–19,499.

    CAS  PubMed  Google Scholar 

  8. Sackett, D. L. and Kosk-Kosicka, D. (1996) The active species of plasma membrane Ca2+-ATPase are a dimer and a monomer-calmodulin complex. J. Biol. Chem. 271, 9987–9991.

    Article  CAS  PubMed  Google Scholar 

  9. Lecocq, J. and Inesi, G. (1966) Determination of inorganic phosphate in the presence of adenosine triphosphate by the molybdo-vanadate method. Anal. Biochem. 15, 160–163.

    Article  CAS  PubMed  Google Scholar 

  10. Lin, T.-I. and Morales, M. F. (1977) Application of a one-step procedure for measuring inorganic phosphate in the presence of proteins: The actomyosin ATPase system. Anal. Biochem. 77, 10–17.

    Article  CAS  PubMed  Google Scholar 

  11. Pharmacia LKB Biotechnology. Affinity Chromatography: Principles and Methods. Amersham Pharmacia Biotech instruction booklet (Uppsala, Sweden).

    Google Scholar 

  12. Eletr, S. and Inesi, G. (1972) Phospholipid orientation in sarcoplasmic membranes: Spin-label ESR and proton NMR studies. Biochim. Biophys. Acta 282, 174–179.

    Article  CAS  PubMed  Google Scholar 

  13. Carvalho, M. G. C., Souza, D. G., and deMeis, L. (1976) On a possible mechanism of energy conservation in sarcoplasmic reticulum membrane. J. Biol. Chem. 251, 3629–3636.

    CAS  PubMed  Google Scholar 

  14. Kosk-Kosicka, D., Kurzmack, M., and Inesi, G. (1983) Kinetic characterization of detergent-solubilized sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry 22, 2559–2567.

    Article  CAS  PubMed  Google Scholar 

  15. Schwartzenbach, G., Senn, H., and Andereff, G. (1957) Helvetica Chimica Acta 40, 1886–1900.

    Article  Google Scholar 

  16. Fabiato, A. and Fabiato, F. (1979) J. Physiol. (Paris) 75, 463,464.

    CAS  Google Scholar 

  17. Kosk-Kosicka, D., Bzdega, T., and Johnson, J. D. (1990) Fluorescence studies on calmodulin binding to erythrocyte Ca2+-ATPase in different oligomerization states. Biochemistry 29, 1875–1879.

    Article  CAS  PubMed  Google Scholar 

  18. Kosk-Kosicka, D. (1990) Comparison of the red blood cell Ca2+-ATPase in ghost membranes and after purification. Mol. Cell. Biochem. 99, 75–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Kosk-Kosicka, D. (2006). Measurement of Ca2+-ATPase Activity (in PMCA and SERCA1). In: Lambert, D.G. (eds) Calcium Signaling Protocols. Methods in Molecular Biology™, vol 312. Humana Press. https://doi.org/10.1385/1-59259-949-4:343

Download citation

  • DOI: https://doi.org/10.1385/1-59259-949-4:343

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-442-5

  • Online ISBN: 978-1-59259-949-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics