Skip to main content

Measurement of Cytosolic-Free Ca2+ in Plant Tissue

  • Protocol
Calcium Signaling Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 312))

Abstract

Several techniques have been used to measure the concentration of cytosolicfree Ca2+ ([Ca2+]cyt) in plants (1,2). These include Ca2+-sensitive microelectrodes, luminescent photoproteins, cameleons, and fluorescent Ca2+ indicators. Ca2+-sensitive microelectrodes (3) can be used only in cells that are able to withstand impalement with two electrodes or a double-barrelled electrode. In addition, microelectrodes suffer from slow response times and difficulties with calibration. These problems are particularly acute in plant cells in which the high turgor often results in partial displacement of the sensor, and the subsequent loss of sensitivity, following impalement. Consequently, the use of Ca2+-sensitive electrodes has been limited to only a few studies in plants and algae (4,5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudd, J. J. and franklin-Tong, V. E. (2001) Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol. 151, 7–33.

    Article  CAS  Google Scholar 

  2. Webb, A. A. R., McAinsh, M. R., Taylor, J. E., and Hetherington, A. M. (1996) Calcium ions as intracellular second messengers in higher plants. Adv. Botanical Res. 22, 45–96.

    Article  CAS  Google Scholar 

  3. Ogden, D. (1994) Microelectrode Techniques: The Plymouth Workshop Handbook, 2nd Ed., Company of Biologists Ltd., Cambridge, UK.

    Google Scholar 

  4. Miller, A. J. and Sanders, D. (1987) Depletion of cytosolic free calcium induced by photosynthesis. Nature 326, 397–400.

    Article  CAS  Google Scholar 

  5. Felle, H. (1988) Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174, 495–499.

    Article  CAS  Google Scholar 

  6. Cobbold, P. H. and Lee, J. A. C. (1991) Aequorin measurements of cytoplasmic free calcium, in Cellular Calcium: A Practical Approach (McCormack, J. G. and Cobbold, P. H., eds.), Oxford University Press, New York, NY, pp. 55–82.

    Google Scholar 

  7. Gilroy, S., Hughes, W. A., and Trewavas, A. J. (1989) A comparison between Quin-2 and Aequorin as indicators of cytoplasmic calcium levels in higher plant cell protoplasts. Plant Physiol. 90, 482–491.

    Article  CAS  PubMed  Google Scholar 

  8. Williamson, R. E. and Ashley, C. C. (1982) Free Ca2+ and cytoplasmic streaming in the alga, Chara. Nature 296, 647–651.

    Article  CAS  PubMed  Google Scholar 

  9. Knight, M. R., Campbell, A. K., Smith, S. M., and Trewavas, A. J. (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352, 524–526.

    Article  CAS  PubMed  Google Scholar 

  10. Knight, H., Trewavas, A. J., and Knight, M. R. (1996) Cold calcium signalling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8, 489–503.

    Article  CAS  PubMed  Google Scholar 

  11. Kiegle, E., Moore, C., Haseloff, J., Tester, M. A., and Knight, M. R. (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 23, 267–278.

    Article  CAS  PubMed  Google Scholar 

  12. Miyawaki, A., Lopis, J., Heim, R., et al. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887.

    Article  CAS  PubMed  Google Scholar 

  13. Gadella, T. W. J., van der Krongt, G. N. M., and Bisseling, T. (1999) GFP-based FRET microscopy in living plant cells. Trends Plant Sci. 4, 287–291.

    Article  PubMed  Google Scholar 

  14. Emmanouilidou, E., Teschemacher, A. G., Pouli, A. E., Nicholls, L. I., Seward, E. P., and Rutter, G. A. (1999) Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon. Curr. Biol. 9, 915–918.

    Article  CAS  PubMed  Google Scholar 

  15. Allen, G. J., Kwak, J. M., Chu, S. P., et al. (1999) cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J. 19, 735–747.

    Article  CAS  PubMed  Google Scholar 

  16. Allen, G. J., Chu, S. P., Harrington, C. L., et al. (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411, 1053–1057.

    Article  CAS  PubMed  Google Scholar 

  17. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence characteristics. J. Biol. Chem. 260, 3440–3450.

    CAS  PubMed  Google Scholar 

  18. Callaham, D. A. and Hepler, P. K. (1991) Measurement of free calcium in plant cells, in Cellular Calcium: A Practical Approach (McCormack, J. G. and Cobbold, P. H., eds.), Oxford University Press, New York, NY, pp. 383–410.

    Google Scholar 

  19. Leckie, C. P., McAinsh, M. R., Allen, G. J., Sanders, D., and Hetherington, A. M. (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95, 15,837–15,842

    Article  CAS  PubMed  Google Scholar 

  20. Staxen, I., Pical, C., Montgomery, L. T., Gray, J. E., Hetherington, A. M., and McAinsh, M. R. (1999) Abscisic acid induces oscillations in guard cell cytosolic free caclium that involve phosphoinositide-specific phospholipase C. Proc. Natl. Acad. Sci. USA 96, 1779–1784.

    Article  CAS  PubMed  Google Scholar 

  21. Ng, C. K-Y., Carr, K., McAinsh, M. R., Powell, B., and Hetherington, A. M. (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410, 596–599.

    Article  CAS  PubMed  Google Scholar 

  22. Schroeder, J. I. and Hagiwara, S. (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc. Natl. Acad. Sci. USA 87, 9305–9309.

    Article  CAS  PubMed  Google Scholar 

  23. Lemtiri-Chlieh, F., MacRobbie, E. A. C., Webb, A. A., R., et al. (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc. Natl. Acad. Sci. USA 100, 10,091–10,095.

    Article  CAS  PubMed  Google Scholar 

  24. Gilroy, S. (1997) Fluorescence microscopy of living plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 165–190.

    Article  CAS  PubMed  Google Scholar 

  25. Konig, K. (2000) Multiphoton microscopy in life sciences. J Microsc. 200, 83–104.

    Article  CAS  PubMed  Google Scholar 

  26. Gilroy, S., Read, N. D., and Trewavas, A. J. (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346, 769–771.

    Article  CAS  PubMed  Google Scholar 

  27. Gilroy, S., Fricker, M. D., Read, N. D., and Trewavas, A. J. (1991) Role of calcium in signal transduction of Commelina guard cells. Plant Cell 3, 333–344.

    Article  CAS  PubMed  Google Scholar 

  28. McAinsh, M. R., Brownlee, C., and Hetherington, A. M. (1990) Abscisic acidinduced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343, 186–188.

    Article  CAS  Google Scholar 

  29. McAinsh, M. R., Brownlee, C., and Hetherington A. M. (1992) Visualizing changes in cytosolic-free Ca2+ during the response of stomatal guard cells to abscisic acid. Plant Cell 4, 1113–1122.

    Article  CAS  PubMed  Google Scholar 

  30. McAinsh, M. R., Webb, A. A. R., Taylor, J. E., and Hetherington, A. M. (1995) Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell 7, 1207–1219.

    Article  CAS  PubMed  Google Scholar 

  31. McAinsh, M. R., Clayton, H., Mansfield, T. A., and Hetherington, A. M. (1996) Changes in stomatal behaviour and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol. 111, 1031–1042.

    CAS  PubMed  Google Scholar 

  32. Irving, H. R., Gehring, C. A., and Parish, R. W. (1992) Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc. Natl. Acad. Sci. USA 89, 1790–1794.

    Article  CAS  PubMed  Google Scholar 

  33. Allan, A. C., Fricker, M. D., Ward, J. L., Beale, M. H., and Trewavas, A. J. (1994) Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell 6, 1319–1328.

    Article  CAS  PubMed  Google Scholar 

  34. Webb, A. A. R., McAinsh, M. R., Mansfield, T. A., and Hetherington, A. M. (1996) Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J. 9, 297–304.

    Article  CAS  Google Scholar 

  35. Grabov, A. and Blatt, M. R. (1997) Parallel control of the inward-rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. Planta 201, 84–95.

    Article  CAS  Google Scholar 

  36. Grabov, A. and Blatt, M. R. (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc. Natl. Acad. Sci. USA 95, 4778–4783.

    Article  CAS  PubMed  Google Scholar 

  37. Webb, A. A. R., Larman, M. G., Montgomery, L. T., Taylor, J. E., and Hetherington, A. M. (2001) The role of calcium in ABA-induced gene expression and stomatal movements. Plant J. 26, 351–362.

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Mata, C., Gay, R., Sokolovski, S., Hills, A., Lamattina, L., and Blatt, M. R. (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc. Natl. Acad. Sci. USA 100, 11,116–11,121.

    Article  CAS  PubMed  Google Scholar 

  39. McAinsh, M. R., Brownlee, C., and Hetherington, A. M. (1991) Partial inhibition of ABA-induced stomatal closure by calcium-channel blockers. Proc. R. Soc. Lond. B 243, 195–201.

    Article  CAS  Google Scholar 

  40. Oparka, K. J., Murphy, R., Derrick, P. M., Prior, D. A. M., and Smith, J. A. C. (1991) Modification of the pressure-probe technique permits controlled intracellular microinjection of fluorescent-probes. J. Cell Sci. 98, 539–544.

    Google Scholar 

  41. Haugland, R. R. (2002) Molecular Probes Handbook of Fluorescent Probes and Research Chemicals, 9th Ed. Molecular Probes, Eugene, OR.

    Google Scholar 

  42. Trejo, C. L., Clephan, A. L., and Davies, W. J. (1995) How do stomata read abscisic acid-signals. Plant Physiol. 109, 803–811.

    CAS  PubMed  Google Scholar 

  43. Brown, K. T. and Flaming, D. G. (1986) Advanced Micropipet Techniques for Cell Physiology. John Wiley and Sons, Chichester, UK.

    Google Scholar 

Download references

Acknowledgment

The author thanks the European Community, The Royal Society, the Natural Environment Research Council (UK), and the Biotechnology and Biological Sciences Research Council (UK) for funding.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

McAinsh, M.R., Ng, C.KY. (2006). Measurement of Cytosolic-Free Ca2+ in Plant Tissue. In: Lambert, D.G. (eds) Calcium Signaling Protocols. Methods in Molecular Biology™, vol 312. Humana Press. https://doi.org/10.1385/1-59259-949-4:289

Download citation

  • DOI: https://doi.org/10.1385/1-59259-949-4:289

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-442-5

  • Online ISBN: 978-1-59259-949-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics