Natural Products and Antifungal Drug Discovery

  • Melissa R. Jacob
  • Larry A. Walker
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 118)


The need for new antifungal agents continues, fueled by opportunistic infections in immunecompromised patients and by the development of resistance to existing agents. Natural products offer a virtually unlimited source of unique molecules and not only serve as a reservoir for new potential drugs and drug prototypes, but also for probes of fungal biology. In this chapter, whole-cell screening methods targeted for natural products are illustrated, including general microplate-based screening, bioautography, and mode of action studies, including the use of genetically altered fungal strains now available commercially.

Key Words

Antifungal susceptibility testing natural products whole-cell bioassay Candida albicans Cryptococcus neoformans Aspergillus Saccharomyces cerevisiae target-based screening bioautography tannins haploinsufficiency synergy 



The authors wish to thank Ameeta Agarwal, Xing-Cong Li, and Everett Jacob for their thorough review and suggestions. We also thank the Public Health Service, National Institute of Allergy and Infectious Diseases, grant number R01 AI27094 and the US Department of Agriculture Agricultural Research Service Specific Cooperative Agreement No. 58-6408-2-0009 for funding this work, and Dominique Sanglard (Institute of Microbiology, University Hospital, Lausanne, Switzerland) for supplying the S. cerevisiae strains used in Subheading


  1. 1.
    Tyler, V. (ed.) (1988) Pharmacognosy. Lea & Febiger, Philadelphia, PA.Google Scholar
  2. 2.
    Clark, A. (1996) Natural products as a resource for new drugs. Pharm. Res. 13, 1133–1141.PubMedCrossRefGoogle Scholar
  3. 3.
    Hostettmann, K., Potterat, O., and Wolfender, J. (1998) The potential of higher plants as a source of new drugs. Chimia 52, 10–17.Google Scholar
  4. 4.
    Hostettmann, K., and Marston, A. (1994) Search for new antifungal compounds from higher plants. Pure Appl. Chem. 66, 2231–2234.CrossRefGoogle Scholar
  5. 5.
    Cowan, M. (1999) Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564–582.PubMedGoogle Scholar
  6. 6.
    Blunden, G. (2001) Biologically active compounds from marine organisms. Phytother. Res. 15, 89–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Faulkner, D. (2002) Marine natural products. Nat. Prod. Reps. 19, 1–48.Google Scholar
  8. 8.
    Vicente, M., Basilio, A., Cabello, A., and Pelaez, F. (2003) Microbial natural products as a source of antifungals. Clinical Microbiol. Infect. 9, 15–32.CrossRefGoogle Scholar
  9. 9.
    Neidleman, S. (1997) Enzymes and microbes as a source of chemical diversity, in High Throughput Screening (Devlin, J., ed.), Dekker, New York. pp. 77–98.Google Scholar
  10. 10.
    Ceske, L. and Kaufman, P. (1999) How and why these compounds are synthesized by plants, in Natural Products from Plants (Kaufman, P., Cseke, LJ, Warber, S, Duke, JA, Brielmann, Hl, eds.), CRC Press, New York, pp. 37–90.Google Scholar
  11. 11.
    Newman, D., Cragg, G., and Snader, K. (2003) Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod 66, 1022–1037.PubMedCrossRefGoogle Scholar
  12. 12.
    Barrett, D. (2002) From natural products to clinically useful antifungals. Biochim. Biophyis. Acta 1587, 224–233.Google Scholar
  13. 13.
    Fleming, A. (1929) The antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10, 226–236.Google Scholar
  14. 14.
    Persidis, A. (1999) Antibacterial and antifungal drug discovery. Nat. Biotechnol. 17, 1141–1142.PubMedCrossRefGoogle Scholar
  15. 15.
    Vera, M. and Joullie, M. (2002) Natural products as probes for cell biology: 20 years of didemnin research. Medicinal Res. Rev. 22, 102–145.CrossRefGoogle Scholar
  16. 16.
    Wagner, H., Bladt, S., and Zgainski, E. (eds.) (1984) Plant Drug Analysis: A Thin Layer Chromatography Atlas. Springer-Verlag, New York, NY.Google Scholar
  17. 17.
    Jung, S., Kim, J., Chang, I., and Ryu, J. (1998) Screening of new bioactive material from microbial extracts of soil microorganism (I) antimicrobial activity from 200 samples using microdilution assay. Arch. Pharm. Res. 21, 278–285.PubMedCrossRefGoogle Scholar
  18. 18.
    Drummond, A., and Waigh, R. (2000) The development of microbiological methods for phytochemical screening. Recent Res. Devel. Phytochem. 4, 143–152.Google Scholar
  19. 19.
    Ieven, M., Vanden Berghe, D., Mertens, F., Vlietinck, A., and Lammens, E. (1979) Screening of higher plants for biological activities I. antimicrobial activity. Planta Medica 36, 311–321.PubMedCrossRefGoogle Scholar
  20. 20.
    Rios, J., Recio, M., and Villar, A. (1988) Screening methods for natural products with antimicrobial activity: a review of the literature. J. Ethnopharmacol. 23, 127–149.PubMedCrossRefGoogle Scholar
  21. 21.
    NCCLS (2003) Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-eighth edition. NCCLS Document M2-A8, Wayne, PA, 23.Google Scholar
  22. 22.
    Monk, B. and Cannon, R. (2002) Genomic pathways to antifungal discovery. Curr. Drug Targets Infect. Disord. 2, 309–329.PubMedCrossRefGoogle Scholar
  23. 23.
    Ryder, N., and Dupont, M. (1985) Inhibition of squalene epoxidase by allylamine antimycotic compounds. A comparative study of the fungal and mammalian enzymes. Biochem. J. 230, 765.PubMedGoogle Scholar
  24. 24.
    Vanden Bossche, H., Willemsens, G., Cools, W., Lauwers, W., and Le Jeune, L. (1978) Biochemical effects of miconazole on fungi II. inhibition of ergosterol biosynthesis in Candida albicans. Chem. Biol. Interact. 21, 59.CrossRefGoogle Scholar
  25. 25.
    Taft, C. (1994) A high throughput in vitro assay for fungal (1,3)-beta-glucan synthase inhibitors. J. Antibiot. 47, 1001.PubMedGoogle Scholar
  26. 26.
    Shedletzky, E. (1997) A microtiter-based fluorescence assay for (1,3)-beta-glucan synthases. Anal. Biochem. 249, 88–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhong, W., Jeffries, M., and Georgopapadakou, N. (2000) Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species. Antimicrob. Agents Chemother. 44, 651–653.PubMedCrossRefGoogle Scholar
  28. 28.
    Wall, M., Wani, M., Brown, D., et al. (1996) Effect of tannins on screening of plant extracts for enzyme inhibitory activity and techniques for their removal. Phytomedicine 3, 281–285.Google Scholar
  29. 29.
    Rishton, G. (1997) Reactive compounds and in vitro false positives in HTS. DDT 2, 382.Google Scholar
  30. 30.
    Phillipson, J., Zhu, M., and Cai, Y. (1998) Biological testing of plant extracts—should polyphenols be removed. Polyphenols Actualites 18, 22–25Google Scholar
  31. 31.
    Timberlake, W. (1995) Cellular reporters for antifungal drug discovery, in Antifungal Agents: Discovery and Mode of Action (Dixon, G., Copping, L., and Hllomon, D., eds.), BIOS Scientific Publishers Ltd., Herndon, VA, pp. 17–29.Google Scholar
  32. 32.
    Munder, T., and Hinnen, A (1999) Yeast cells as tools for target-oriented screening. Appl. Microbiol. Biotechnol. 52, 311–320.PubMedCrossRefGoogle Scholar
  33. 33.
    Dixon, G., Scanlon, D., Cooper, S., and Broad, P. (1997) A reporter gene assay for fungal sterol biosynthesis inhibitors. J. Steroid Biochem. Mol. Biol. 62, 165–171.PubMedCrossRefGoogle Scholar
  34. 34.
    Routledge, E., and Sumpter, J. (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environment. Tox. Chem. 15, 241–248.CrossRefGoogle Scholar
  35. 35.
    NCCLS (2002) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-second edition. NCCLS Document M27-A2, Wayne, PA, 22.Google Scholar
  36. 36.
    NCCLS (2002) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. NCCLS Document M38-A, Wayne, PA, 22.Google Scholar
  37. 37.
    Hughes, T. (2002) Yeast and drug discovery. Funct. Integr. Genomics 2, 199–211.PubMedCrossRefGoogle Scholar
  38. 38.
    Kontoyiannis, D., Sagar, N., and Hirschi, K. (1999) Overexpression of Erg11p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 43, 2798–2800.PubMedGoogle Scholar
  39. 39.
    Rine, J., Hansen, W., Hardeman, E., and Davis, R. (1983) Targeted selection of recombinant clones through gene dosage effects. Proc. Natl. Acad. Sci. USA 80, 6750–6754.PubMedCrossRefGoogle Scholar
  40. 40.
    Selzer, P., Brutsche, S., Wiesner, P., Schmid, P., and Mullner, H. (2000) Targetbased drug discovery for the development of novel antiinfectives. Int. J. Med. Microbiol. 290, 191–201.PubMedGoogle Scholar
  41. 41.
    Giaever, G., Chu, A., L, N., Connelly, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.PubMedCrossRefGoogle Scholar
  42. 42.
  43. 43.
    Khan, S., Nimrod, A., Mehrpooya, M., Nitiss, J., Walker, L., and Clark, A. (2002) Antifungal activity of eupolauridine and its action on DNA topoisomerases. Antimicrob. Ag. Chemother. 46, 1785–1792.CrossRefGoogle Scholar
  44. 44.
    Anaissie, E., Paetznick, V., and Bodey, G. (1991) Fluconazole susceptibility testing of Candida albicans: microtiter method that is independent of inoculum size, temperature, and time of reading. Antimicrob. Agents Chemother. 35, 1641.PubMedGoogle Scholar
  45. 45.
    Janssen, A., Scheffer, J., and Svendsen, A. (1987) Antimicrobial activity of essential oils: a 1976–1986 literature review. aspects of test methods. Planta Medica 53, 395–398.PubMedCrossRefGoogle Scholar
  46. 46.
    Rex, J., Pfaller, M., Rinaldi, M., Polak, A., and Galgiani, J. (1993) Antifungal susceptiblity testing. Clin. Microbiol. Rev. 6, 367–381.PubMedGoogle Scholar
  47. 47.
    Buchta, V. and Otcenasek, M. (1996) Factors affecting the results of a broth microdilution antifungal susceptibility testing in vitro. Zentralbl. Bakteriol. 283, 375–390.PubMedGoogle Scholar
  48. 48.
    Cuenca-Estrella, M., Diaz-Guerra, T., Mellado, E., and Rodriguez-Tudela, J. (2001) Influence of glucose supplementation and inoculum size on growth kinetics and antifungal susceptibility testing of Candida spp. J. Clin. Microbiol. 39, 525–532.PubMedCrossRefGoogle Scholar
  49. 49.
    Muhlschlegel, F. and Fonzi, W. (1997) PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol. Cell. Biol. 17, 5960–5967.PubMedGoogle Scholar
  50. 50.
    Lee, K. (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13, 148–153.PubMedCrossRefGoogle Scholar
  51. 51.
    Murray, M. and Murro, W. (1991) Antimicrobial testing using oxygen consumption as the indicator of susceptibility. Arch. Pathol. Lab. Med. 115, 1235–1240.PubMedGoogle Scholar
  52. 52.
    Tellier, R., Krajden, M., Grigoriew, G., and Campbell, I. (1992) Innovative endpoint determination system for antifungal susceptibility testing of yeasts. Antimicrob. Agents Chemother. 36, 1619–1625.PubMedGoogle Scholar
  53. 53.
    To, W., Fothergill, A., and Rinaldi, M. (1995) Comparitive evaluation of macrodilution and Alamar Blue colorimetric microdilution broth methods for antifungal susceptibility testing of yeast isolates. J. Clin. Microbiol. 33, 2660–2664.PubMedGoogle Scholar
  54. 54.
    Rodriguez-Tudela, J., Martin-Diez, F., Cuenca-Estrella, M., Rodero, L., Carpintero, Y., and Gorgojo, B. (2000) Influence of shaking on antifungal susceptibility testing of Cryptococcus neoformans: a comparison of the NCCLS standard medium, buffered yeast nitrogen base, and RPMI-2% glucose. Antimicrob. Agents Chemother. 44, 400.PubMedCrossRefGoogle Scholar
  55. 55.
    Llop, C., Pujol, I., Aguilar, C., Sala, J., Riba, D., and Guarro, J. (2000) Comparison of three methods of determining MICs for filamentous fungi using different end point criteria and incubation periods. Antimicrob. Agents Chemother. 44, 239.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang, J., Chung, T., and Oldenburg, K. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomolecular Screening 4, 67.CrossRefGoogle Scholar
  57. 57.
    Li, X.-C., Dunbar, D., ElSohly, H., et al. (2001) A new naphthopyrone derivative from Cassia quinquangulata and structural revision of quinquangulin and its glycosides. J. Nat. Prod. 64, 1153–1156.PubMedCrossRefGoogle Scholar
  58. 58.
    Muhammad, I., Li, X., Jacob, M., Tekwani, B., Dunbar, D., and Ferreira, D. (2003) Antimicrobial and antiparasitic (+)-trans hexahydrodibenzopyrans and analogues from Machaerium multiflorum. J. Nat. Prod. 66, 804–809.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang, Z., ElSohly, H., Jacob, M., Pasco, D., Walker, L., and Clark, A. (2002) New sesquiterpenoids from the root of Guatteria multivenia. J. Nat. Prod. 65, 856–859.PubMedCrossRefGoogle Scholar
  60. 60.
    Betina, V. (1973) Bioautography in paper and thin-layer chromatography and its scope in the antibiotic field. J. Chromatogr, 78, 41–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Hamburger, M. and Cordell, G. (1987) A direct bioautographic TLC assay for compounds possessing antibacterial activity. J. Nat. Prod. 50, 19–22.PubMedCrossRefGoogle Scholar
  62. 62.
    Begue, W. and Line, R. (1972) The use of tetrazolium salts in bioautographic procedures. J. Chromatogr, 64, 182–184.PubMedCrossRefGoogle Scholar
  63. 63.
    Wedge, D. and Nagle, D. (2000) A new 2D-TLC bioautography method for the discovery of novel antifungal agents to control plant pathogens. J. Nat. Prod. 63, 1050–1054.PubMedCrossRefGoogle Scholar
  64. 64.
    Stead, P. (1997) Natural products drug discovery-new technologies and approaches. Drug Discovery Today 2, 256–259.CrossRefGoogle Scholar
  65. 65.
    Alvi, K. (2001) Screening natural products: bioassay-directed isolation of active components by dual-mode CCC. J. Liq. Chrom. Rel. Technol. 24, 1765–1773.CrossRefGoogle Scholar
  66. 66.
    Grabley, S. and Thiericke, R. (1999) Bioactive agents from natural sources: trends in discovery and application, in Advances in Biochemical Engineering/Biotechnology (Scheper, T., ed.), Springer, New York, pp. 104–153.Google Scholar
  67. 67.
    Houghton, P. (2000) Use of small scale bioassays in the discovery of novel drugs from natural sources. Phytother. Res. 14, 419–423.PubMedCrossRefGoogle Scholar
  68. 68.
    Vlachos, V., Critchely, T., and von Holy, A. (1996) Establishment of a protocol for testing antimicrobial activity in southern African microalgae. Microbios 88, 115–123.PubMedGoogle Scholar
  69. 69.
    Nadir, M., Abdual-Baqi, D., Al-Sarraj, S., and Hussein, W. (1986) The effect of different methods of extraction on the antimicrobial activity of medicinal plants. Fitoterapia 57, 359–363.Google Scholar
  70. 70.
    Eloff, J. (1998) Which extractant should be used for the screening and isolation of antimicrobial components from plants? J. Ethnopharm. 60, 1–8.CrossRefGoogle Scholar
  71. 71.
    Devlin, J. (1997) Microcollection of plants for biochemical profiling, in High Throughput Screening (Devlin, J., ed.), Dekker, New York, pp. 49–76.Google Scholar
  72. 72.
    Pandey, R. (1998) Prospecting for potentially new pharmaceuticals from natural sources. Med. Res. Rev. 18, 333–346.PubMedCrossRefGoogle Scholar
  73. 73.
    Taniguchi, M. (1993) Ethnobotanical drug dicovery based on medicine men’s trials in the african savanna: screening of east african plants for antimicrobial activity II. J. Nat. Prod. 56, 1539–1546.PubMedCrossRefGoogle Scholar
  74. 74.
    Malone, M. (1983) The pharmacological evaluation of natural products-general and specific approaches to screening ethnopharmaceuticals. J. Ethnopharmacol. 8, 127–147.PubMedCrossRefGoogle Scholar
  75. 75.
    Borenfreund, E., Babich, H., and Martin-Alguacil, N. (1990) Rapid chemosensitivity assay with human normal and tumor cells in vitro. In Vitro Cell Dev. Biol. 26, 1030–1034.PubMedCrossRefGoogle Scholar
  76. 76.
    Frost, D. (1995) A whole-cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. J. Antibiotics 48, 306–310.Google Scholar
  77. 77.
    Antonio, J., and Molinski, T. (1993) Screening of marine invertebrates for the presence of ergosterol-sensitive antifungal compounds. J. Nat. Prod. 56, 54–61.PubMedCrossRefGoogle Scholar
  78. 78.
    Mandala, S., Thornton, R., Frommer, B., Dreikorn, A., and Kurtz, M. (1997) Viridiofungins, novel inhibitors of sphingolipid synthesis. J. Antibiot. 50, 339–343.PubMedGoogle Scholar
  79. 79.
    Lee, M., Galazzo, J., Staley, A., et al. (2001) Microbial fermentation-derived inhibition of efflux-pump-mediated drug resistance. Farmaco 56, 81–85.PubMedCrossRefGoogle Scholar
  80. 80.
    Jacob, M., Hossain, C., Mohammed, K., et al. (2003) Reversal of fluconazole resistance in multidrug efflux-resistant fungi by the Dysidea arenaria sponge sterol 9α-, 11α-epoxycholest-7-ene-3β, 5α, 6α, 19-tetrol 6 acetate. J. Nat. Prod. 66, 1618–1622.PubMedCrossRefGoogle Scholar
  81. 81.
    Stermitz, F., Lorenz, P., Tawara, J., Zenewicz, L., and Lewis, K. (2000) Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA 97, 1433–1437.PubMedCrossRefGoogle Scholar
  82. 82.
    Lomovskaya, O. and Watkins, W. (2001) Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J. Mol. Microbiol. Biotechnol. 3, 225–236.PubMedGoogle Scholar
  83. 83.
    Calabrese, D., Bille, J., and Sanglard, D. (2000) A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 146, 2743–2754.PubMedGoogle Scholar
  84. 84.
    Sanglard, D., Kuchler, K., Ischer, F., Pagani, J., Monod, M., and Bille, J. (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve apecific multidrug transporters. Antimicrob. Agents Chemother. 39, 2378–2386.PubMedGoogle Scholar
  85. 85.
    Sanglard, D., Ischer, F., Monod, M., and Bille, J. (1997) Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143, 405–416.PubMedCrossRefGoogle Scholar
  86. 86.
    White, T., Marr, K., and Bowden, R. (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Micro. Rev. 11, 382–402.PubMedGoogle Scholar
  87. 87.
    Li, R. (1999) In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrobial Agents Chemother. 43, 1401–1405.Google Scholar
  88. 88.
    Tallarida, R. (2001) Drug synergism: its detection and application. J. Pharmacol. Exp. Ther. 298, 865–872.PubMedGoogle Scholar
  89. 89.
    Plummer, J. (1998) Design and analysis of drug combination experiments. Pain Reviews 5, 16–31.CrossRefGoogle Scholar
  90. 90.
    Prichard, M. and Shipman, C. (1990) A three-dimensional model to analyze drug-drug interactions. Antivir. Res. 14, 181–206.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Melissa R. Jacob
    • 1
  • Larry A. Walker
    • 1
    • 2
  1. 1.National Center for Natural Products Research, Research Institute of Pharmaceutical SciencesUniversity of MississippiUniversity
  2. 2.Department of Pharmacology, School of PharmacyUniversity of MississppiUniversity

Personalised recommendations