Susceptibility Testing Methods of Antifungal Agents

  • Erika J. Ernst
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 118)


Several methods for testing antifungal susceptibility are currently utilized. Minimum inhibitory concentrations can be tested using standardized noncommercial or commercial tests. Fungicidal testing includes either in vitro methods, such as time-kill or minimum fungicidal testing methods, or animal models. This chapter provides background information for utilizing and evaluating results obtained from antifungal susceptibility testing methods.

Key Words

Antifungal susceptibility testing yeast filamentous fungi 


  1. 1.
    NCCLS (2002) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. NCCLS Document M38-A, NCCLS, Wayne, PA.Google Scholar
  2. 2.
    NCCLS (2002) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Second Edition. NCCLS Document M27-A2, NCCLS, Wayne, PA.Google Scholar
  3. 3.
    NCCLS (2004) Methods for Antifungal Disk Diffusion Susceptibility Testing of Yeasts; Approved Guideline. NCCLS Document M44-A. NCCLS, Wayne, PA, 19087–1898.Google Scholar
  4. 4.
    Hoffman, H. L., and Pfaller, M. A. (2001) In vitro antifungal susceptibility testing. Pharmacotherapy 21, 111S–123S.PubMedCrossRefGoogle Scholar
  5. 5.
    Reyes, G., and Ghannoum, M. A. (2000) Antifungal susceptibility testing of yeasts: uses and limitations. Drug Resist. Update 3, 14–19.CrossRefGoogle Scholar
  6. 6.
    Rex, J. H., and Pfaller, M. A. (2002) Has antifungal susceptibility testing come of age? Clin. Infect. Dis. 35, 982–989.PubMedCrossRefGoogle Scholar
  7. 7.
    Rex, J. H., Pfaller, M. A., Walsh, T. J., et al. (2001) Antifungal susceptibility testing: practical aspects and current challenges. Clin. Microbiol. Rev. 14, 643–658.PubMedCrossRefGoogle Scholar
  8. 8.
    Pfaller, M. A., Buschelman B, Bale, M. J., et al. (1994) Multicenter comparison of a colorimetric microdilution broth method with the reference macrodilution method for in vitro susceptibility testing of yeast isolates. Diagn. Microbiol. Infect. Dis. 19, 9–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Pfaller, M. A., Vu, Q., Lancaster, M., et al. (1994) Multisite reproducibility of colorimetric broth microdilution method for antifungal susceptibility testing of yeast isolates. J. Clin. Microbiol. 32, 1625–1628.PubMedGoogle Scholar
  10. 10.
    Espinel-Ingroff, A., Pfaller, M., Messer, S. A., Knapp, C. C., Holliday, N., and Killian, S. B. (2004) Multicenter comparison of the Sensititre YeastOne colorimetric antifungal panel with the NCCLS M27-A2 reference method for testing new antifungal agents against clinical isolates of Candida spp. J. Clin. Microbiol. 2004; 42, 718–721.PubMedCrossRefGoogle Scholar
  11. 11.
    Yang, H. C., Mikami, Y., Yazawa, K., et al. (1998) Colorimetric MTT assessment of antifungal activity of D0870 against fluconazole-resistant Candida albicans. Mycoses 41, 477–480.PubMedCrossRefGoogle Scholar
  12. 12.
    Riesselman, M. H., Hazen, K. C., and Cutler, J. E. (2000) Determination of antifungal MICs by a rapid susceptibility assay. J. Clin. Microbiol. 38, 333–340.PubMedGoogle Scholar
  13. 13.
    Li, R. K., Elie, C. M., Clayton, G. E., and Ciblak, M. A. (2000) Comparison of a new colorimetric assay with the NCCLS broth microdilution method (M-27A) for antifungal drug MIC determination. J. Clin. Microbiol. 38, 2334–2338.PubMedGoogle Scholar
  14. 14.
    Pfaller, M. A., Messer, S. A., and Coffmann, S. (1995) Comparison of visual and spectrophotometric methods of MIC endpoint determinations by using broth microdilution methods to test five antifungal agents, including the new triazole D0870. J. Clin. Microbiol. 33, 1094–1097.PubMedGoogle Scholar
  15. 15.
    Espinel-Ingroff, A., Dawson, K., Pfaller, M., et al. (1995) Comparative and collaborative evaluation of standardization of antifungal susceptibility testing for filamentous fungi. Antimicrob. Agents Chemother. 39, 314–319.PubMedGoogle Scholar
  16. 16.
    Espinel-Ingroff, A. (1994) Etest for antifungal susceptibility testing of yeasts. Diagn. Microbiol. Infect. Dis. 19, 217–220.PubMedCrossRefGoogle Scholar
  17. 17.
    Espinel-Ingroff, A., Pfaller, M., Erwin, M. E., and Jones, R. N. (1996) Interlaboratory evaluation of Etest method for testing antifungal susceptibilities of pathogenic yeasts to five antifungal agents by using Casitone agar and solidified RPMI 1640 medium with 2% glucose. J. Clin. Microbiol. 34, 848–852.PubMedGoogle Scholar
  18. 18.
    Espinel-Ingroff, A., and Rezusta, A. (2002) E-test method for testing susceptibilities of Aspergillus spp. to the new triazoles voriconazole and posaconazole and to established antifungal agents: comparison with NCCLS broth microdilution method. J. Clin. Microbiol. 40, 2101–2107.PubMedCrossRefGoogle Scholar
  19. 19.
    Wenisch, C., Linnau, K. F., Parschalk, B., Zedtwitz-Liebenstein, K., and Georgopoulos, A. (1997) Rapid susceptibility testing of fungi by flow cytometry using vital staining. J. Clin. Microbiol. 35, 5–10.PubMedGoogle Scholar
  20. 20.
    Ramani, R., Gangwar, M., and Chaturvedi, V. (2003) Flow cytometry antifungal susceptibility testing of Aspergillus fumigatus and comparison of mode of action of voriconazole vis-a-vis amphotericin B and itraconazole. Antimicrob. Agents Chemother. 47, 3627–3629.PubMedCrossRefGoogle Scholar
  21. 21.
    Wenisch, C., Moore, C. B., Krause, R., Presterl, E., Pichna, P., and Denning, D. W. (2001) Antifungal susceptibility testing of fluconazole by flow cytometry correlates with clinical outcome. J. Clin. Microbiol. 39, 2458–2462.PubMedCrossRefGoogle Scholar
  22. 22.
    NCCLS. (1998) Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Guideline. NCCLS Document M26-A, NCCLS, Wayne, PA.Google Scholar
  23. 23.
    Pfaller, M. A., Sheehan, D. J., and Rex, J. H. (2004) Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin. Microbiol. Rev. 17, 268–280.PubMedCrossRefGoogle Scholar
  24. 24.
    Petraitiene, R., Petraitis, V., Groll, A. H., et al. (1999) Antifungal activity of LY303366, a novel echinocandin B, in experimental disseminated candidiasis in rabbits. Antimicrob. Agents Chemother. 43, 2148–2155.PubMedGoogle Scholar
  25. 25.
    Andes, D. (2003) In vivo pharmacodynamics of antifungal drugs in treatment of candidiasis. Antimicrob. Agents Chemother. 47, 1179–1186.PubMedCrossRefGoogle Scholar
  26. 26.
    Andes, D. (2003) Pharmacokinetics and pharmacodynamics in the development of antifungal compounds. Curr. Opin. Invest. Drugs 4, 991–998.Google Scholar
  27. 27.
    Groll, A. H., Mickiene, D., Petraitiene, R., et al. (2001) Pharmacokinetic and pharmacodynamic modeling of anidulafungin (LY303366): reappraisal of its efficacy in neutropenic animal models of opportunistic mycoses using optimal plasma sampling. Antimicrob. Agents Chemother. 45, 2845–2855.PubMedCrossRefGoogle Scholar
  28. 28.
    Klepser, M. E., Lewis, R. E., Ernst, E. J., et al. (2001) Multi-center evaluation of antifungal time-kill methods. J. Infect. Dis. Pharmacother. 5, 29–41.CrossRefGoogle Scholar
  29. 29.
    Klepser, M. E., Ernst, E. J., Lewis, R. E., Ernst, M. E., and Pfaller, M. A. (1998) Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob. Agents Chemother. 42, 1207–1212.PubMedGoogle Scholar
  30. 30.
    Canton, E., Peman, J., Viudes, A., Quindos, G., Gobernado, M., Espinel-Ingroff, A. (2003) Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species. Diagn. Microbiol. Infect. Dis. 45, 203–206.PubMedCrossRefGoogle Scholar
  31. 31.
    Espinel-Ingroff, A., Fothergill, A., Peter, J., Rinaldi, M. G., and Walsh, T. J. (2002) Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus spp.: NCCLS collaborative study. J. Clin. Microbiol. 40, 3204–3208.PubMedCrossRefGoogle Scholar
  32. 32.
    Liao, R. S., Rennie, R. P., and Talbot, J. A. (1999) Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob. Agents Chemother. 43, 1034–1041.PubMedGoogle Scholar
  33. 33.
    Bowman, J. C., Hicks, P. S., Kurtz, M. B., et al. (2002) The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob. Agents Chemother. 46, 3001–3012.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Erika J. Ernst
    • 1
  1. 1.College of PharmacyUniversity of IowaIowa City

Personalised recommendations