Skip to main content

Animal Models of Renal Fibrosis

  • Protocol
Fibrosis Research

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 117))

Abstract

Most of the present knowledge on pathomechanism of renal fibrosis is based on experimental studies with laboratory animals. Today, a variety of genetic and inducible animal models that mimic primary causes of human disease such as diabetes mellitus, glomerulonephritis, or lupus erythematodes are available. However, only few of these models progress consistently to interstitial fibrosis in the kidney involving interestitial fiberosis, tubular atrophy, and glomerulosclerosis, which are common features of renal fibrogenesis. In this chapter, the mouse models of nephrotoxic serm nephritis, COL4A3-deficiency, and unilateral urethral obstruction, which all result reliably into renal fibrosis, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Remuzzi, G. and Bertani, T. (1998) Pathophysiology of progressive nephropathies. N. Engl. J. Med. 339, 1448–1456.

    Article  PubMed  CAS  Google Scholar 

  2. Pastan, S. and Bailey, J. (1998) Dialysis therapy. N. Engl. J. Med. 338, 1428–1437.

    Article  PubMed  CAS  Google Scholar 

  3. Zeisberg, M., Strutz, F., and Muller, G. A. (2001) Renal fibrosis: an update. Curr. Opin. Nephrol. Hypertens. 10, 315–320.

    Article  PubMed  CAS  Google Scholar 

  4. Lloyd, C. M., Minto, A. W., Dorf, M. E., et al. (1997) RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med. 185, 1371–1380.

    Article  PubMed  CAS  Google Scholar 

  5. Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D., Strutz, F., and Kalluri, R. (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968.

    Article  PubMed  CAS  Google Scholar 

  6. Cosgrove, D., Meehan, D. T., Grunkemeyer, J. A., Kornak, J. M., Sayers, R., Hunter, W. J., and Samuelson, G. C. (1996) Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes Dev. 10, 2981–2992.

    Article  PubMed  CAS  Google Scholar 

  7. Miner, J. H. and Sanes, J. R. (1996) Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): implications for Alport syndrome. J. Cell Biol. 135, 1403–1413.

    Article  PubMed  CAS  Google Scholar 

  8. Kalluri, R. and Cosgrove, D. (2000) Assembly of type IV collagen. Insights from alpha3(IV) collagen-deficient mice. J. Biol. Chem. 275, 12,719–12,724.

    Article  PubMed  CAS  Google Scholar 

  9. Hamano, Y., Grunkemeyer, J. A., Sudhakar, A., et al. (2002) Determinants of vascular permeability in the kidney glomerulus. J. Biol. Chem. 30, 30.

    Google Scholar 

  10. Zeisberg, M., Bottiglio, C., Kumar, N., Maeshima, Y., Strutz, F., Muller, G. A., and Kalluri, R. (2003) Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal Physiol. 285, F1060–1067.

    PubMed  CAS  Google Scholar 

  11. Andrews, K. L., Betsuyaku, T., Rogers, S., Shipley, J. M., Senior, R. M., and Miner, J. H. (2000) Gelatinase B (MMP-9) is not essential in the normal kidney and does not influence progression of renal disease in a mouse model of Alport syndrome. Am. J. Pathol. 157, 303–311.

    Article  PubMed  CAS  Google Scholar 

  12. Cosgrove, D., Rodgers, K., Meehan, D., et al. (2000) Integrin alpha1beta1 and transforming growth factor-beta1 play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am. J. Pathol. 157, 1649–659.

    Article  PubMed  CAS  Google Scholar 

  13. Eddy, A. A. (1996) Molecular insights into renal interstitial fibrosis [editorial]. J. Am. Soc. Nephrol. 7, 2495–2508.

    PubMed  CAS  Google Scholar 

  14. Border, W. A. and Noble, N. A. (1995) Targeting TGF-beta for treatment of disease. Nat. Med. 1, 1000–1001.

    Article  PubMed  CAS  Google Scholar 

  15. Iwano, M., Plieth, D., Danoff, T. M., Xue, C., Okada, H., and Neilson, E. G. (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350.

    PubMed  CAS  Google Scholar 

  16. Raij, L., Azar, S., and Keane, W. (1984) Mesangial immune injury, hypertension, and progressive glomerular damage in Dahl rats. Kidney Int. 26, 137–143.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Zeisberg, M., Soubasakos, M.A., Kalluri, R. (2005). Animal Models of Renal Fibrosis. In: Varga, J., Brenner, D.A., Phan, S.H. (eds) Fibrosis Research. Methods in Molecular Medicine, vol 117. Humana Press. https://doi.org/10.1385/1-59259-940-0:261

Download citation

  • DOI: https://doi.org/10.1385/1-59259-940-0:261

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-479-1

  • Online ISBN: 978-1-59259-940-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics