Skip to main content

Idiotype Gene Rescue in Follicular Lymphoma

  • Protocol
Lymphoma

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 115))

  • 549 Accesses

Abstract

Beyond the morphological, immunophenotypic, and genetic information used for the diagnosis of lymphoid malignancies, molecular analyses have deepened our insights into the development of B-cell lymphomas. We have learned that B-cell tumors can be grouped according to the mutational status of their immunoglobulin variable (V) region genes, and this has become an important prognostic tool in chronic lymphocytic leukemia. The analysis of V genes also has allowed us to more precisely place B-cell lymphomas relative to their normal B-cell counterparts and to the germinal center where somatic hypermutation takes place. It has become evident that many of the common B-cell tumors arise at this site and are able to respond to stimuli, which govern normal B-cells. In this chapter, we focus on the analysis of V genes in follicular lymphomas based on the experience in our laboratory and provide a detailed guide for this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NCI Non-Hodgkin’s Classification Project Writing Committee. (1985) Classification of non-Hodgkin’s lymphomas: reproducibility of major classification systems: Cancer 55, 457–481.

    Article  Google Scholar 

  2. Horning, S. J. (1993) Natural history of and therapy for the indolent non-Hodgkins’s lymphoma. Semin. Oncol. 20, 75–88.

    PubMed  CAS  Google Scholar 

  3. Ersbøll, J., et al. (1989) Follicular low grade non-Hodgkin’s lymphoma: long-term outcome with or without tumor progression: Eur. J. Haematol. 42, 155–163.

    Article  PubMed  Google Scholar 

  4. Simon, R., et al. (1988) The Non-Hodgkin Lymphoma Pathologic Classification Project. Long-term follow-up of 1153 patients with non-Hodgkin lymphomas. Ann. Intern. Med. 109, 939–945.

    PubMed  CAS  Google Scholar 

  5. Zukerberg, L. R., et al. (1993) Diffuse low-grade B-cell lymphomas. Four clinically distinct subtypes defined by a combination of morphologic and immunophenotypic features. Am. J. Clin. Pathol. 100, 373–385.

    PubMed  CAS  Google Scholar 

  6. Stein, H., et al. (1984) Immunohistological analysis of human lymphoma: correlation of histological and immunological categories. Adv. Cancer Res. 42, 67–147.

    Article  PubMed  CAS  Google Scholar 

  7. Harris, N. L., et al. (1984) Immunohistologic characterization of two malignant lymphomas of germinal center type (centroblastic/centrocytic and centrocytic) with monoclonal antibodies. Follicular and diffuse lymphomas of small-cleaved-cell type are related but distinct entities. Am. J. Pathol. 117, 262–272.

    PubMed  CAS  Google Scholar 

  8. Stein, H., et al. (1982) The normal and malignant germinal center. Clin. Haematol. 11, 531–559.

    PubMed  CAS  Google Scholar 

  9. Harris, N. L., et al. (1994) A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84, 1361–1392.

    PubMed  CAS  Google Scholar 

  10. Johnson, P. W., et al. (1994) Detection of cells bearing the t(14;18) translocation following myeloablative treatment and autologous bone marrow transplantation for follicular lymphoma. J. Clin. Oncol. 12, 798–805.

    PubMed  CAS  Google Scholar 

  11. Stamatopoulos, K., et al. (2000) Molecular insights into the immunopathogenesis of follicular lymphoma. Immunol. Today 21, 298–305.

    Article  PubMed  CAS  Google Scholar 

  12. Willis, T. G., et al. (2000) The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 96, 808–822.

    PubMed  CAS  Google Scholar 

  13. Lam, K. P., et al. (1997) In vivo ablation of surface immunoglobulin on mature B-cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083.

    Article  PubMed  CAS  Google Scholar 

  14. Levy, R., et al. (1987) Somatic mutation in human B-cell tumors. Immunol. Rev. 43–58.

    Google Scholar 

  15. Schroeder, H. J., et al. (1994) The pathogenesis of chronic lymphocytic leukemia: Analysis of the antibody repertoire. Immunol. Today 15, 288–294.

    Article  PubMed  CAS  Google Scholar 

  16. Li, Y., et al. (1996) The I binding specificity of human VH4-34 (VH4-21) encoded antibodies is determined by both VH framework region 1 and complementarity determining region 3. J. Mol. Biol. 256, 577–589

    Article  PubMed  CAS  Google Scholar 

  17. Pospsil, R., et al. (1998) CD5 and othr superantigens as ‘ticklers’ of the B-cell receptor. Immunol. Today 19, 106–108.

    Article  Google Scholar 

  18. Silverman, G. J. (1992) Human antibody responses to bacterial antigens: studies of a model conventional antigen and a proposed model B-cell superantigen. Int. Rev. Immunol. 9, 57–78.

    Article  PubMed  CAS  Google Scholar 

  19. Bahler, D. W., et al. (1992) Clonal evolution of a follicular lymphoma: evidence for antigen selection. Proc. Natl. Acad. Sci. USA. 89, 6770–6774.

    Article  PubMed  CAS  Google Scholar 

  20. Zelenetz, A. D., et al. (1991) Histologic transformation of follicular lymphoma to diffuse lymphoma represents tumor progression by a single malignant B-cell. J. Exp. Med. 173, 197–207.

    Article  PubMed  CAS  Google Scholar 

  21. Zhu, D., et al. (1994) Clonal history of a human follicular lymphoma as revealed in the immunoglobulin variable region genes. Br. J. Haematol. 86, 505–512.

    Article  PubMed  CAS  Google Scholar 

  22. Malisan, F., et al. (1996) B-Chronic lymphocytic leukemias can undergo isotype switching in vivo and can be induced to differentiate and switch in vitro. Blood 87, 717–724.

    PubMed  CAS  Google Scholar 

  23. Efremov, D. G., et al. (1996) IgM-producing chronic lymphocytic leukemia cells undergo immunoglobulin isotype-switching without acquiring somatic mutations. J. Clin. Invest. 98, 290–298.

    Article  PubMed  CAS  Google Scholar 

  24. Ottensmeier, C. H., et al. (1998) Analysis of VH genes in follicular and diffuse lymphoma shows ongoing somatic mutation and multiple isotype transcripts in early disease with changes during disease progression. Blood 91, 4292–4299.

    PubMed  CAS  Google Scholar 

  25. Stevenson, F., et al. (1998) Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunol. Rev. 162, 247–259.

    Article  PubMed  CAS  Google Scholar 

  26. Alizadeh, A. A., et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 403, 503–511.

    Article  PubMed  CAS  Google Scholar 

  27. Hamblin, T. J., et al. (2000) Immunoglobulin V genes and CD38 expression in CLL. Blood 95, 2455–2457.

    PubMed  CAS  Google Scholar 

  28. Berek, C. (1992) The development of B-cells and the B-cell repertoire in the microenvironment of the germinal center. Immunol. Rev. 5, 5–19.

    Article  Google Scholar 

  29. Limpens, J., et al. (1995) Lymphoma-associated translocation t(14;18) in blood B-cells of normal individuals. Blood 85, 2528–2536.

    PubMed  CAS  Google Scholar 

  30. Han, S., et al. (1996) Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B-cells. Science 274, 2094–2097.

    Article  PubMed  CAS  Google Scholar 

  31. Henderson, A., et al. (1998) Transcriptional regulation during B-cell developmen. Annu. Rev. Immunol. 16, 163–200.

    Article  PubMed  CAS  Google Scholar 

  32. Chen, C., et al. (1997) Editing disease-associated autoantibodies. Immunity 6, 97–105.

    Article  PubMed  Google Scholar 

  33. Pelanda, R., et al. (1997) Receptor editing in a transgenic mouse model: site, efficiency, and role in B-cell tolerance and antibody diversification. Immunity 7, 765–775.

    Article  PubMed  CAS  Google Scholar 

  34. Radic, M. Z., et al. (1996) Receptor editing, immune diversification, and self-tolerance. Immunity 5, 505–511.

    Article  PubMed  CAS  Google Scholar 

  35. Bahler, D., et al. (1991) Ig VH gene expression among human follicular lymphomas. Blood 78, 1561–1568.

    PubMed  CAS  Google Scholar 

  36. Stevenson, F. K., et al. (1993) Differential usage of an Ig heavy chain variable region gene by human B-cell tumors. Blood 82, 224–230.

    PubMed  CAS  Google Scholar 

  37. Hummel, M., et al. (1994) Mantle cell (previously centrocytic) lymphomas express V(H) genes with no or very little somatic mutations like the physiologic cells of the follicle mantle. Blood 84, 403–407.

    PubMed  CAS  Google Scholar 

  38. Stamatopoulos, K., et al. (1997) Follicular lymphoma immunoglobulin kappa light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains. Br. J. Haematol. 96, 132–146.

    Article  PubMed  CAS  Google Scholar 

  39. Noppe, S. M., et al. (1999) The genetic variability of the VH genes in follicular lymphoma: the impact of the hypermutation mechanism. Br. J. Haematol. 107, 625–640

    Article  PubMed  CAS  Google Scholar 

  40. Zhu, D., et al. (2002) Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 99, 2562–2568.

    Article  PubMed  CAS  Google Scholar 

  41. Cleary, M. L., et al. (1986) Clustering of extensive somatic mutations in the variable region of an immunoglobulin heavy chain gene from a human B-cell lymphoma. Cell 44, 97–106.

    Article  PubMed  CAS  Google Scholar 

  42. Zelenetz, A. D., et al. (1992) Clonal expansion in follicular lymphoma occurs subsequent to antigenic selection. J. Exp. Med. 176, 1137–1148.

    Article  PubMed  CAS  Google Scholar 

  43. Zelenetz, A. D., et al. (1993) A submicroscopic interstitial deletion of chromosome 14 frequently occurs adjacent to the t(14;18) translocation breakpoint in human follicular lymphoma. Genes Chromosom. Cancer 6, 140–150.

    Article  PubMed  CAS  Google Scholar 

  44. Wu, H., et al. (1995) A human follicular lymphoma B-cell line hypermutates its functional immunoglobulin genes in vitro. Eur. J. Immunol. 25, 3263–3269.

    Article  PubMed  CAS  Google Scholar 

  45. Corbett, S. J., et al. (1997) Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “minor” D segments or D-D recombination. J. Mol. Biol. 270, 587–597.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by Cancer Research UK and the Wessex Cancer Trust.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

McCann, K., Sahota, S.S., Stevenson, F.K., H., C. (2005). Idiotype Gene Rescue in Follicular Lymphoma. In: Illidge, T., Johnson, P.W.M. (eds) Lymphoma. Methods in Molecular Medicine™, vol 115. Humana Press. https://doi.org/10.1385/1-59259-936-2:145

Download citation

  • DOI: https://doi.org/10.1385/1-59259-936-2:145

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-159-2

  • Online ISBN: 978-1-59259-936-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics