Skip to main content

Demonstration of a Germinal Center Immunophenotype in Lymphomas by Immunocytochemistry and Flow Cytometry

  • Protocol
Lymphoma

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 115))

  • 616 Accesses

Abstract

The germinal center plays an important role in the pathogenesis of B-cell lymphomas, and evidence exists to suggest that most cases are germinal center or postgerminal center derived. Burkitt lymphoma and follicular lymphoma are derived from the germinal center stage of differentiation. It has been shown that diffuse large B-cell lymphomas with a germinal center-type pattern of RNA expression or a germinal center cell phenotype using immunocytochemistry have a more favorable outcome compared with those with a postgerminal center/activated profile. Microarray technology may not be available in many diagnostic laboratories, and antibody-based methods are much simpler and cheaper and are therefore more applicable to the routine setting. Immunocytochemistry has the advantage that the cells of interest are identified morphologically, and it is applicable retrospectively to fixed tissue. The main disadvantage is that only single-color staining is currently used in the routine setting. Flow cytometry allows one to obtain a more precise definition of individual cell types. The cells of interest are identified by a combination of physical characteristics and by the use of multiple antibodies labeled with different fluorochromes. Flow cytometry has the major advantage of being able to analyze very large numbers of cells, and results can be obtained within a few hours of the specimen being taken. The methods described allow B-cell lymphomas to be crudely divided into two groups, those with a germinal center phenotype and those that are mainly postgerminal center tumors. As knowledge of the normal biology of the germinal center develops, it will become possible to use immunophenotypic methods to more precisely classify all types of mature B-cell malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faili, A., Aoufouchi, S., Gueranger, Q., Zober, C., Leon, A., Bertocci, B.. et al. (2002) AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat. Immunol. 3, 815ā€“821

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Harris, R. S., Sale, J. E., Petersen-Mahrt, S. K., and Neuberger, M. S. (2002) AID is essential for immunoglobulin V gene conversion in a cultured B-cell line. Curr. Biol. 12, 435ā€“438.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Dunn-Walters, D., Thiede, C., Alpen, B., and Spencer, J. (2001) Somatic hypermutation and B-cell lymphoma. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 356, 73ā€“82.

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Klein, U., Goossens, T., Fischer, M., Kanzler, H., Braeuninger, A., Rajewsky, K., et al. (1998) Somatic hypermutation in normal and transformed human B-cells. Immunol. Rev. 162, 261ā€“280.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Nadel, B., Marculescu, R., Le, T., Rudnicki, M., Bocskor, S., and Jager, U. (2001) Novel insights into the mechanism of t(14;18)(q32;q21) translocation in follicular lymphoma. Leuk. Lymphoma 42, 1181ā€“1194.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Iida, S., Rao, P. H., Butler, M., Corradini, P., Boccadoro, M., Klein, B., et al. (1997) Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat. Genet. 17, 226ā€“230.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Bishop, P. C., Rao, V. K., and Wilson, W. H. (2000) Burkittā€™s lymphoma: molecular pathogenesis and treatment. Cancer Invest. 18, 574ā€“83.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Hecht, J. L., and Aster, J. C. (2000) Molecular biology of Burkittā€™s lymphoma. J. Clin. Oncol. 18, 3707ā€“3721.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Fenton, J. A., Pratt, G., Rawstron, A. C., and Morgan, G. J. (2002) Isotype class switching and the pathogenesis of multiple myeloma. Hematol. Oncol. 20, 75ā€“85.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Pasqualucci, L., Migliazza, A., Fracchiolla, N., William, C., Neri, A., Baldini, L., et al. (1998) BCL-6 mutations in normal germinal center B-cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. USA 95, 11816ā€“11821.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Pasqualucci, L., Neumeister, P., Goossens, T., Nanjangud, G., Chaganti, R. S., Kuppers, R., et al. (2001) Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341ā€“346.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Kuppers, R., Hansmann, M. L., and Rajewsky, K. Clonality and germinal center B-cell derivation of Hodgkin/Reed-Sternberg cells in Hodgkinā€™s disease. Ann. Oncol. 9(Suppl 5), S17ā€“S20.

    Google ScholarĀ 

  13. Kuppers, R., Schwering, I., Brauninger, A., Rajewsky, K., and Hansmann, M. L. (2002) Biology of Hodgkinā€™s lymphoma. Ann. Oncol. 13(Suppl 1), 11ā€“18.

    PubMedĀ  Google ScholarĀ 

  14. Dunphy, C. H., Polski, J. M., Lance, Evans H., and Gardner, L. J. (2001) Paraffin immunoreactivity of CD10, CDw75, and Bcl-6 in follicle center cell lymphoma. Leuk. Lymphoma 41, 585ā€“592.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Abou-Elella, A., Shafer, M. T., Wan, X. Y., Velanker, M., Weisenburger, D. D., Nathwani, B. N., et al. (2000) Lymphomas with follicular and monocytoid B-cell components. Evidence for a common clonal origin from follicle center cells. Am. J. Clin. Pathol. 114, 516ā€“522.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Ott, G., Katzenberger, T., Lohr, A., Kindelberger, S., Rudiger, T., Wilhelm, M., et al. (2002) Cytomorphologic, immunohistochemical, and cytogenetic profiles of follicular lymphoma: 2 types of follicular lymphoma grade 3. Blood 99, 3806ā€“3812.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503ā€“511.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Barrans, S. L., Carter, I., Owen, R. G., Davies, F. E., Patmore, R. D., Haynes, A. P., et al. (2002) Germinal center phenotype and bcl-2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B-cell lymphoma. Blood 99, 1136ā€“1143.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. King, B. E., Chen, C., Locker, J., Kant, J., Okuyama, K., Falini, B., et al. (2000) Immunophenotypic and genotypic markers of follicular center cell neoplasia in diffuse large B-cell lymphomas. Mod. Pathol. 13, 1219ā€“1231.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Kramer, M. H., Hermans, J., Wijburg, E., Philippo, K., Geelen, E., van Krieken, J. H., et al. (1998) Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood 92, 3152ā€“3162.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Barrans, S. L., Oā€™Connor, S. J., Evans, P. A., Davies, F. E., Owen, R. G., Haynes, A. P., et al. (2002) Rearrangement of the BCL6 locus at 3q27 is an independent poor prognostic factor in nodal diffuse large B-cell lymphoma. Br. J. Haematol. 117, 322ā€“332.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Chang, C. C., Liu, Y. C., Cleveland, R. P., and Perkins, S. L. (2000) Expression of c-Myc and p53 correlates with clinical outcome in diffuse large B-cell lymphomas. Am. J. Clin. Pathol. 113, 512ā€“518.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Leroy, K., Haioun, C., Lepage, E., Le Metayer, N., Berger, F., Labouyrie, E., et al. (2002) p53 gene mutations are associated with poor survival in low and low-intermediate risk diffuse large B-cell lymphomas. Ann. Oncol. 13, 1108ā€“1115.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Braziel, R. M., Arber, D. A., Slovak, M. L., Gulley, M. L., Spier, C., Kjeldsberg, C., et al. (2001) The Burkitt-like lymphomas: a Southwest Oncology Group study delineating phenotypic, genotypic, and clinical features. Blood 97, 3713ā€“3720.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Nakamura, N., Nakamine, H., Tamaru, J., Nakamura, S., Yoshino, T., Ohshima, K., et al. (2002) The distinction between Burkitt lymphoma and diffuse large B-cell lymphoma with c-myc rearrangement. Mod. Pathol. 15, 771ā€“776.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  26. Macpherson, N., Lesack, D., Klasa, R., Horsman, D., Connors, J. M., Barnett, M. et al. (1999) Small noncleaved, non-Burkittā€™s (Burkit-Like) lymphoma: cytogenetics predict outcome and reflect clinical presentation. J. Clin. Oncol. 17, 1558ā€“1567.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Nagai, J., Kigasawa, H., Koga, N., Katoh, A., Nishihira, H., and Nagao, T. (1998) Clinical significance of detecting p53 protein in Burkitt lymphoma and B-cell acute lymphoblastic leukemia using immunocytochemistry. Leuk. Lymphoma 28, 591ā€“597.

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Lindstrom, M., and Wiman, K. (2002) Role of genetic and epigenetic changes in Burkitt lymphoma. Semin. Cancer Biol. 12, 381.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Sullivan, M. P., and Ramirez, I. (1985) Curability of Burkittā€™s lymphoma with high-dose cyclophosphamide-high-dose methotrexate therapy and intrathecal chemoprophylaxis. J. Clin. Oncol. 3, 627ā€“636.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Thomas, D. A., Cortes, J., Oā€™Brien, S., Pierce, S., Faderl, S., Albitar, M., et al. (1999) Hyper-CVAD program in Burkittā€™s-type adult acute lymphoblastic leukemia. J. Clin. Oncol. 17, 2461ā€“2470.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Attygalle, A., Al Jehani, R., Diss, T. C., Munson, P., Liu, H., Du, M. Q., et al. (2002) Neoplastic T-cells in angioimmunoblastic T-cell lymphoma express CD10. Blood 99, 627ā€“633.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Ye, B. H., Cattoretti, G., Shen, Q., Zhang, J., Hawe, N., de Waard, R., et al. (1997) The BCL-6 proto-oncogene controls germinal-center formation and Th2-type inflammation. Nat. Genet. 16, 161ā€“170.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Ree, H. J., Kadin, M. E., Kikuchi, M., Ko, Y. H., Suzumiya, J., and Go, J. H. (1999) Bcl-6 expression in reactive follicular hyperplasia, follicular lymphoma, and angioimmunoblastic T-cell lymphoma with hyperplastic germinal centers: heterogeneity of intrafollicular T-cells and their altered distribution in the pathogenesis of angioimmunoblastic T-cell lymphoma. Hum. Pathol. 30, 403ā€“411.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Chaganti, S. R., Rao, P. H., Chen, W., Dyomin, V., Jhanwar, S. C., Parsa, N. Z., et al. (1998) Deregulation of BCL6 in non-Hodgkin lymphoma by insertion of IGH sequences in complex translocations involving band 3q27. Genes Chromosomes Cancer 23, 328ā€“336.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Akasaka, T., Ueda, C., Kurata, M., Akasaka, H., Yamabe, H., Uchiyama, T., and Ohno, H. (2000) Nonimmunoglobulin (non-Ig)/BCL6 gene fusion in diffuse large B-cell lymphoma results in worse prognosis than Ig/BCL6. Blood 96, 2907ā€“2909.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Artiga, M. J., Saez, A. I., Romero, C., Sanchez-Beato, M., Mateo, M. S., Navas, C., et al. (2002) A short mutational hot spot in the first intron of BCL-6 is associated with increased BCL-6 expression and with longer overall survival in large B-cell lymphomas. Am. J. Pathol. 160, 1371ā€“1380.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Vitolo, U., Botto, B., Capello, D., Vivenza, D., Zagonel, V., Gloghini, A., et al. (2002) Point mutations of the BCL-6 gene: clinical and prognostic correlation in B-diffuse large cell lymphoma. Leukemia 16, 268ā€“275.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Huang, J. Z., Sanger, W. G., Greiner, T. C., Staudt, L. M., Weisenburger, D. D., Pickering, D. L., et al. (2002) The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood 99, 2285ā€“2290.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Pallesen, G. (1987) The Distribution of CD23 in normal human tissues and in malignant lymphomas, in Leucocyte Typing III. White Cell Differentiation Antigens (McMichael A. J., ed), Oxford University Press, Oxford, pp. 383ā€“386.

    Google ScholarĀ 

  40. Aoyagi, K., Kohfuji, K., Yano, S., Murakami, N., Miyagi, M., Takeda, J., et al. (2002) The expression of proliferating cell nuclear antigen, p53, p21, and apoptosis in primary gastric lymphoma. Surgery 132, 20ā€“26.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  41. Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J., and Cleveland, J. L. (1999) Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658ā€“2669.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Adams, J. (1992) Biotin amplification of biotin horseradish peroxidase signals in histochemical stains. J. Histochem. Cytochem. 40, 1457ā€“1463.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Rawstron, A. C., Kennedy, B., Evans, P. A., Davies, F. E., Richards, S. J., Haynes, A. P., et al. (2001) Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood 98, 29ā€“35.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Rawstron, A. C., Owen, R. G., Davies, F. E., Johnson, R. J., Jones, R. A., Richards, S. J., et al. (1997) Circulating plasma cells in multiple myeloma: characterization and correlation with disease stage. Br. J. Haematol. 97, 46ā€“55.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Pasqualucci, L., Neumeister, P., Goossens, T., Nanjangud, G., Chaganti, R. S., Kuppers, R., et al. (2001) Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341ā€“346.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Angelin-Duclos, C., Cattoretti, G., Lin, K. I., and Calame, K. (2000) Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J. Immunol. 165, 5462ā€“5471.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Shaffer, A. L., Lin, K. I., Kuo, T. C., Yu, X., Hurt, E. M., Rosenwald, A., et al. (2002) Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B-cell gene expression program. Immunity 17, 51ā€“62.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Tsuboi, K., Iida, S., Inagaki, H., Kato, M., Hayami, Y., Hanamura, I., et al. (2000) MUM1/IRF4 expression as a frequent event in mature lymphoid malignancies. Leukemia 14, 449ā€“456.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Cerutti, A., Schaffer, A., Shah, S., Zan, H., Liou, H. C., Goodwin, R. G., et al. (1998) CD30 is a CD40-inducible molecule that negatively regulates CD40-mediated immunoglobulin class switching in non-antigen-selected human B-cells. Immunity 9, 247ā€“256.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Cerutti, A., Schaffer, A., Goodwin, R. G., Shah, S., Zan, H., Ely, S., et al. (2000) Engagement of CD153 (CD30 ligand) by CD30+ T-cells inhibits class switch DNA recombination and antibody production in human IgD+ IgM+ B-cells. J. Immunol. 165, 786ā€“794.

    PubMedĀ  CASĀ  Google ScholarĀ 

  51. Aizawa, S., Nakano, H., Ishida, T., Horie, R., Nagai, M., Ito, K., et al. (1997) Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF2 are involved in CD30-mediated NFkappaB activation. J. Biol. Chem. 272, 2042ā€“2045.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Clodi, K., Asgary, Z., Zhao, S., Kliche, K. O., Cabanillas, F., Andreeff, M., et al. Coexpression of CD40 and CD40 ligand in B-cell lymphoma cells. Br. J. Haematol. 103, 270ā€“275.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Jack, A., Barrans, S., Blythe, D., Rawstron, A. (2005). Demonstration of a Germinal Center Immunophenotype in Lymphomas by Immunocytochemistry and Flow Cytometry. In: Illidge, T., Johnson, P.W.M. (eds) Lymphoma. Methods in Molecular Medicineā„¢, vol 115. Humana Press. https://doi.org/10.1385/1-59259-936-2:065

Download citation

  • DOI: https://doi.org/10.1385/1-59259-936-2:065

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-159-2

  • Online ISBN: 978-1-59259-936-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics