Lymphoma pp 129-144 | Cite as

Determining Mutational Status of Immunoglobulin V Genes in Chronic Lymphocytic Leukemia

A Useful Prognostic Indicator
  • Surinder S. Sahota
  • Gavin Babbage
  • Niklas Zojer
  • Christian H. Ottensmeier
  • Freda K. Stevenson
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 115)


Determining the clonal origins of malignant B-cells will have an impact on disease understanding and management. In this regard, immunoglobulin variable (V) region gene analysis already is having a significant impact in delineating the tumor cell of origin. It can identify, among other features whether such a cell has undergone somatic mutation, which usually occurs within germinal centres. Remarkably, in chronic lymphocytic leukemia (CLL), the mutational status of V genes has allowed researchers to identify two subsets of disease, one originating from an unmutated B-cell with a markedly poorer disease outcome and the other from a mutated B-cell, which associates with long-term survival. The V gene status in CLL thus provides a robust indicator of disease outcome, which is beginning to shape clinical treatment. This chapter describes in detail the methodology for determining V gene usage in CLL, from acquisition of patient sample to generating the V-gene readout.

Key Words

Immunoglobulin V gene somatic mutation prognosis leukemia 



This work was funded by The Leukaemia Research Fund UK, Tenovus UK, Cancer Research UK, and a European Society for Medical Oncology Fellowship (to N.Z.).


  1. 1.
    Berek, C. (1992) The development of B-cells and the B-cell repertoire in the microenvironment of the germinal center. Immunol. Rev. 126, 5–19.PubMedCrossRefGoogle Scholar
  2. 2.
    MacLennan, I. C. (1994) Germinal centers. Ann. Rev. Immunol. 12, 117–139.CrossRefGoogle Scholar
  3. 3.
    Goossens, T., Klein, U., and Kuppers, R. (1998) Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl. Acad. Sci. USA 95, 2463–2468.PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson, P. C., de Bouteiller, O., Liu, Y. J., Potter, K., Banchereau, J., Capra, J. D., et al. (1998) Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J. Exp. Med. 187, 59–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Cook, G. P., and Tomlinson, I. M. (1995) The human immunoglobulin VH repertoire. Immunol. Today. 16, 237–242.PubMedCrossRefGoogle Scholar
  6. 6.
    Corbett, S. J., Tomlinson, I. M., Sonnhammer, E. L. L., Buck, D., and Winter, G. (1997) Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segment, inverted D segments, “minor” D segments or D-D recombination. J. Mol. Biol. 270, 587–597.PubMedCrossRefGoogle Scholar
  7. 7.
    Ravetch, J.V., Siebenlist, U., Korsmeyer, S., Waldmann, T. and Leder, P. (1981) Structure of the human immunoglobulin mu locus: characteristics of embryonic and rearranged J and D genes. Cell. 27, 583–591.PubMedCrossRefGoogle Scholar
  8. 8.
    Zachau, H. G. (1995) The human immunoglobulin κ genes, in Immunoglobulin Genes (Honjo, T., and Alt, F. W., eds.), Academic, San Diego, CA, pp 173–191.CrossRefGoogle Scholar
  9. 9.
    Williams, S. C., Frippiat, J.-P., TomLinson, I. M., Ignatovich, O., Lefranc, M.-P. and Winter, G. (1996) Sequence and evolution of the human germLine Vλ repertoire. J. Mol. Biol. 264, 220–232.PubMedCrossRefGoogle Scholar
  10. 10.
    Kirkham, P. M., and Schroeder, H. W. Jr (1994) Antibody structure and the evolution of immunoglobulin V gene segments. Semin. Immunol. 6, 347–360.PubMedCrossRefGoogle Scholar
  11. 11.
    Silberstein, L. E., Jefferies, L. C., Goldman, J., Friedman, D., Moore, J. S., Nowell, P. C., et al. (1991) Variable region gene analysis of pathologic human autoantibodies to the related i and I red blood cell antigens. Blood. 78, 2372–2386.PubMedGoogle Scholar
  12. 12.
    Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K., and Capra, J. D. (1992) VH restriction among human cold agglutinins. The VH4–21 gene segment is required to encode anti-I and anti-i specificities. J. Immunol. 149, 2337–2344.PubMedGoogle Scholar
  13. 13.
    Li, Y., Spellerberg, M. B., Stevenson, F. K., Capra, D., and Potter, K. N. (1996) The I binding specificity of human VH4–34 (VH4–21) encoded antibodies is determined by both VH framework region 1 and complementarity determining region 3. J. Mol. Biol. 256, 577–589.PubMedCrossRefGoogle Scholar
  14. 14.
    Chapman, C. J., Spellerberg, M. B., Smith, G. A., Carter, S. J., Hamblin, T. J., and Stevenson, F. K. (1993) Autoanti-red cell antibodies synthesized by patients with infectious mononucleosis utilize the VH4–21 gene segment. J. Immunol. 151, 1051–1061.PubMedGoogle Scholar
  15. 15.
    Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G., and Stevenson, F. K. (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 94, 1848–1854.PubMedGoogle Scholar
  16. 16.
    Damle, R. N., Wasil, T., Fais, F., Ghiotto, F., Valetto, A., Allen, S. L., et al. (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 94, 1840–1847.PubMedGoogle Scholar
  17. 17.
    Stevenson, F., Sahota, S., Zhu, D., Ottensmeier, C., Chapman, C., Oscier, D., and Hamblin, T. (1998) Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunol. Rev. 162, 247–259.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu, D., Hawkins, R. E., Hamblin, T. J., and Stevenson, F. K. (1994) Clonal history of a human follicular lymphoma as revealed in the immunoglobulin variable region genes. Br. J. Haematol. 86, 505–512.PubMedCrossRefGoogle Scholar
  19. 19.
    Kwok, S., and Higuchi, R. (1989) Avoiding false positives with PCR. Nature. 339, 237–238.PubMedCrossRefGoogle Scholar
  20. 20.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning. Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  21. 21.
    Stevenson, F. K., Spellerberg, M. B., Treasure, J., Chapman, C. J., Silberstein, L. E., Hamblin, T. J., and Jones, D. B. (1993) Differential usage of an Ig heavy chain variable region gene by human B-cell tumors. J. Immunol. 82, 224–230.Google Scholar
  22. 22.
    Forconi, F., King, C. A., Sahota, S. S., Kennaway, C. K., Russell, N. H., and Stevenson, F. K. (2002) Insight into the potential for DNA idiotypic fusion vaccines designed for patients by analysing xenogeneic anti-idiotypic antibody responses. Immunology. 107, 39–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Sahota S. S., Davis, Z., Hamblin, T. J., and Stevenson, F. K. (2000) Somatic mutation of bcl-6 genes can occur in the absence of VH mutations in chronic lymphocytic leukemia. Blood 95, 3534–3540.Google Scholar
  24. 24.
    Dorner, T., Foster, S. J., Brezinschek, H. P., and Lipsky, P. E. (1998) Analysis of the targeting of the hypermutational machinery and the impact of subsequent selection on the distribution of nucleotide changes in human VHDJH rearrangements. Immunol Rev. 162, 161–171.PubMedCrossRefGoogle Scholar
  25. 25.
    Rassenti, L. Z., and Kipps, T. J. (1997) Lack of allelic exclusion in B-cell chronic lymphocytic leukemia. J. Exp. Med. 185, 1435–1445.PubMedCrossRefGoogle Scholar
  26. 26.
    Tobin, G., Thunberg, U., Johnson, A., Thorn, I., Soderberg, O., Hultdin, M., et al. (2002) Somatically mutated Ig V(H) 3–21 genes characterize a new subset of chronic lymphocytic leukemia. Blood 99, 2262–2264.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Surinder S. Sahota
    • 1
  • Gavin Babbage
    • 2
  • Niklas Zojer
    • 1
  • Christian H. Ottensmeier
    • 1
  • Freda K. Stevenson
    • 1
  1. 1.Cancer Sciences Division, Southampton University Hospitals NHS TrustUniversity of SouthamptonSouthamptonUK
  2. 2.Cancer Sciences DivisionUniversity of SouthamptonSouthamptonUK

Personalised recommendations