Skip to main content

Peptide-Based Strategy for siRNA Delivery into Mammalian Cells

  • Protocol
RNA Silencing

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 309))

Abstract

The potential to control and alter gene expression constitutes an essential strategy in both fundamental and pharmaceutical research. The recent discovery of the RNA interference pathway in a wide variety of eukaryotic organisms has provided a novel means of characterizing gene function in mammalian cells and new perspectives in both molecular biology and future therapeutic developments (13). Short, interfering RNAs (siRNAs) constitute a powerful tool to silence gene expression posttranscriptionally (13). However, the major limitation of siRNA application, as for most antisense or nucleic acid-based strategies, remains their poor cellular uptake associated with low permeability of the cell membrane to nucleic acids (4,5). Several viral (69) and nonviral (6,10) strategies have been proposed to improve the delivery of either siRNAs expressing vectors or synthetic siRNAs, both in cultured cells and in vivo (6). So far, although siRNA transfection can be achieved with classical laboratory-cultured cell lines using lipid-based formulations, siRNA delivery remains a major challenge for many cell lines and there is still no reasonably efficient method for in vivo application (6). The most efficient method for in vivo applications is the nonviral “hydrodynamic” tail-vein injection of mice with high doses of siRNA (1113). Cell-penetrating peptides are powerful carriers for cellular uptake of a variety of macromolecules, including proteins, peptides, and oligonucleotides (1417). Several peptide-based strategies have been developed to improve the delivery of oligonucleotides both in vitro and in vivo using either covalent or complex approaches (1820).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.

    Article  PubMed  CAS  Google Scholar 

  2. McManus, M. T. and Sharp, P. A. (2002) Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747.

    Article  PubMed  CAS  Google Scholar 

  3. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  4. Luo, D. and Saltzman, M. W. (2000) Synthetic DNA delivery system. Nat. Biotechnol. 18, 33–37.

    Article  PubMed  CAS  Google Scholar 

  5. Niidome, T. and Huang, L. (2002) Gene therapy progress and prospects: non viral vectors. Gene Ther. 10, 991–998.

    Google Scholar 

  6. Rozema, D. B. and Lewis, D. L. (2003) siRNA delivery technologies for mammalian systems. Target 2, 253–260.

    Article  CAS  Google Scholar 

  7. Hommel, D. J., Sears, R. M., Georgescu, D., Simmons, D., and Dileone, R. J. (2003) Local gene knockdown in the brain using viral-mediated RNA interference. Nat. Med. 9, 1539–1543.

    Article  PubMed  CAS  Google Scholar 

  8. Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247.

    Article  PubMed  CAS  Google Scholar 

  9. Xia, H., Mao, Q., Paulson, H. L., and Davidson, B. L. (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 20, 1006–1010.

    Article  PubMed  CAS  Google Scholar 

  10. Simeoni, F., Morris, M. C., Heitz, F., and Divita, G. (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implication for delivery of siRNA into mammalian cells. Nucleic Acids Res. 31, 2717–2727.

    Article  PubMed  CAS  Google Scholar 

  11. McCaffrey A. P., Meuse, L., Phan, T. T., Conklin, D. S., Hannon, G. J., and Kan, M. A. (2002) RNA interference in adult mice. Nature 418, 38–39.

    Article  PubMed  CAS  Google Scholar 

  12. Song, E., Lee, S., Wang, J., et al. (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351.

    Article  PubMed  CAS  Google Scholar 

  13. Lewis, D. L., Hagstrom, J. E., Loomos, A. G., Wolff, J. A., and Herweijer, H. (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 32, 107–108.

    Article  PubMed  CAS  Google Scholar 

  14. Gariepy, J. and Kawamura, K. (2000) Vectorial delivery of macromolecules into cells using peptide-based vehicles. Trends Biotechnol. 19, 21–26.

    Article  Google Scholar 

  15. Morris, M. C., Depollier, J., Mery, J., Heitz, F., and Divita, G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173–1176.

    Article  PubMed  CAS  Google Scholar 

  16. Wadia, J. S. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52–56.

    Article  PubMed  CAS  Google Scholar 

  17. Langel, U. (2002) Cell Penetrating Peptides: Processes and Application. (Langel, U., ed.), Pharmacology & Toxicology Series, CRC, Boca Raton, FL.

    Google Scholar 

  18. Morris, M. C., Chaloin, L., Heitz, F., and Divita, G. (2000) Translocating peptides and proteins and their use for gene delivery. Curr. Opin. Biotechnol. 11, 461–466.

    Article  PubMed  CAS  Google Scholar 

  19. Järver, P. and Langel, U. (2004) The use of cell-penetrating peptides as a tool for gene regulation. Drug. Discov. Today 9, 395–402.

    Article  PubMed  Google Scholar 

  20. Gait. M. J. (2003) Peptide-mediated cellular delivery of antisense oligonucleotides and their analogues. Cell. Mol. Life Sci. 60, 1–10.

    Article  Google Scholar 

  21. Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., and Divita G. (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 25, 2730–2736.

    Article  PubMed  CAS  Google Scholar 

  22. Vidal, P., Morris, M. C., Chaloin, L., Heitz, F., and Divita G. (1997) New strategy for RNA vectorization in mammalian cells. Use of a peptide vector. C.R. Acad. Sci. III 320, 279–287.

    PubMed  CAS  Google Scholar 

  23. Morris, M. C., Chaloin, L., Mery, J., Heitz, F., and Divita G. (1999) A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Res. 27, 3510–3517.

    Article  PubMed  CAS  Google Scholar 

  24. Morris M. C., Heitz, F., and Divita G. Personal communication.

    Google Scholar 

  25. Marthinet, E., Divita, G., Bernaud, J., Rigal, D., and Baggetto, L. G. (2000). Modulation of the typical multidrug resistance phenotype by targeting the MED-1 region of human MDR1 promoter. Gene Ther. 14, 1224–1233.

    Article  Google Scholar 

  26. Mery, J., Granier, C., Juin, M., and Brugidou, J. (1993) Disulfide linkage to polyacrylic resin for automated Fmoc peptide synthesis. Immunochemical applications of peptide resins and mercaptoamide peptides. Int. J. Pept. Protein Res. 42, 447–452.

    Google Scholar 

  27. Morris, M. C., Chaloin, L., Choob, M., Archdeacon, J., Heitz, F., and Divita, G. (2004) Combination of a new generation of PNAs with a peptide-based carrier enables efficient targeting of cell cycle progression. Gene Ther. 11, 757–764.

    Article  PubMed  CAS  Google Scholar 

  28. Morris, K. V., Chan, S. W., Jacobsen, S. E., and Looney, D. J. (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–92.

    Article  PubMed  CAS  Google Scholar 

  29. Deshayes, S., Plenat, T., Aldrian-Herrada, G., Divita, G., Le Grimellec, C., and Heitz, F. (2004) Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes. Biochemistry 43, 7698–7706.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Centre National de la Recherche Scientifique (CNRS) and by grants from the Agence Nationale de Recherche sur le SIDA (ANRS), the European Community (QLK2-CT-2001-01451), the Association pour la Recherche sur le Cancer to M.C.M. (ARC-4326) and to G.D. (ARC-5271). F.S. was supported by a grant from La Ligue de Recherche Contre le Cancer.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Simeoni, F., Morris, M.C., Heitz, F., Divita, G. (2005). Peptide-Based Strategy for siRNA Delivery into Mammalian Cells. In: Carmichael, G.G. (eds) RNA Silencing. Methods in Molecular Biology™, vol 309. Humana Press. https://doi.org/10.1385/1-59259-935-4:251

Download citation

  • DOI: https://doi.org/10.1385/1-59259-935-4:251

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-436-4

  • Online ISBN: 978-1-59259-935-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics