Skip to main content

Gene Silencing by a DNA Vector-Based RNAi Technology

  • Protocol
RNA Silencing

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 309))

Abstract

Double-stranded RNA (dsRNA) can suppress gene expression by inducing mRNA degradation of the homologous gene, known as RNA interference (RNAi). First, an RNase III-like dsRNA-specific endonuclease, Dicer, cleaves long dsRNA into 21- to 23-nucleotide (nt) small, interfering RNAs (siRNAs). Second, each resulting siRNA is incorporated into an RNA-induced silencing complex (RISC), which consists of eIF2C1, eIF2C2, Gemin3 (an RNA helicase), Gemin4 and other proteins. The siRNA guides the RISC to the homologous mRNA. Finally, the endoribonuclease in the RISC cleaves the targeted mRNA at the vicinity of the binding site, followed by further degradation of the mRNA by an exoribonuclease. As a result, gene silencing is established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  2. Sui, G., Soohoo, C., Affarel, B., et al. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520.

    Article  PubMed  CAS  Google Scholar 

  3. Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.

    Article  PubMed  CAS  Google Scholar 

  4. Paddison, P. J., Caudy, A. A., and Hannon, G. J. (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  5. Paul, C. P., Good, P. D., Winer, I., and Engelke, D. R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.

    Article  PubMed  CAS  Google Scholar 

  6. McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J., and Sharp, P. A. (2002) Gene silencing using micro-RNA designed hairpins. RNA 8, 842–850.

    Article  PubMed  CAS  Google Scholar 

  7. Yu, J. Y., DeRuiter, S. L., and Turner, D. L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052.

    Article  PubMed  CAS  Google Scholar 

  8. Miyagishi, M. and Taira, K. (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497–500.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, N. S., Dohjima, T., Bauer, G., et al. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20, 500–505.

    PubMed  CAS  Google Scholar 

  10. Gupta, S., Schoer, R. A., Egan, J. E., Hannon, G. J., and Mittal, V. (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1927–1932.

    Article  PubMed  CAS  Google Scholar 

  11. Kasim, V., Miyagishi, M., and Taira, K. (2004) Control of siRNA expression using the Cre-loxP recombination system. Nucleic Acids Res. 32, e66.

    Article  PubMed  Google Scholar 

  12. Higuchi, M., Tsutsumi, R., Higashi, H., and Hatakeyama, M. (2004) Conditional gene silencing utilizing the lac repressor reveals a role of SHP-2 in cagA-positive Helicobacter pylori pathogenicity. Cancer Sci. 95, 442–447.

    Article  PubMed  CAS  Google Scholar 

  13. Czauderna, F., Santel, A., Hinz, M., et al. (2003) Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res. 31, e127.

    Article  PubMed  Google Scholar 

  14. Matsukura, S., Jones, P. A., and Takai, D. (2003) Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res. 31, e77.

    Article  PubMed  Google Scholar 

  15. Tuschl, T. (2002) Expanding small RNA interference. Nat. Biotechnol. 20, 446–448.

    Article  PubMed  CAS  Google Scholar 

  16. Bogenhagen, D. F., Sakonju, S., and Brown, D. D. (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3′ border of the region. Cell 19, 27–35

    Article  PubMed  CAS  Google Scholar 

  17. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

    Article  PubMed  CAS  Google Scholar 

  18. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.

    Article  PubMed  CAS  Google Scholar 

  19. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330.

    Article  PubMed  CAS  Google Scholar 

  20. Mittal, V. (2004) Improving the efficiency of RNA interference in mammals. Nat. Rev. Genet. 5, 355–365.

    Article  PubMed  CAS  Google Scholar 

  21. Ui-Tei, K., Naito, Y., Takahashi, F., et al. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, L. and Mu, F. Y. (2004) A Web-based design center for vector-based siRNA and siRNA cassette. Bioinformatics 4, 4.

    Google Scholar 

  23. McManus, M. T., Haines, B. B., Dillon, C. P., et al. (2002) Small interfering RNAmediated gene silencing in T lymphocytes. J. Immunol. 169, 5754–5760.

    PubMed  CAS  Google Scholar 

  24. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002) Singlestranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574.

    Article  PubMed  CAS  Google Scholar 

  25. Jackson, A. L., Bartz, S. R., Schelter, J., et al. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637.

    Article  PubMed  CAS  Google Scholar 

  26. Scacheri, P. C., Rozenblatt-Rosen, O., Caplen, N. J., et al. (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1892–1897.

    Article  PubMed  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E. F., and Maniatis, T., eds. (1990) Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. p. 1.86.

    Google Scholar 

  28. Paddison, P. J., Silva, J. M., Conklin, D. S., et al. (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431.

    Article  PubMed  CAS  Google Scholar 

  29. Tiscornia, G., Singer, O., Ikawa, M., and Verma, I. M. (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100, 1844–1848.

    Article  PubMed  CAS  Google Scholar 

  30. Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., et al. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406.

    Article  PubMed  CAS  Google Scholar 

  31. Matta, H., Hozayev, B., Tomar, R., Chugh, P., and Chaudhary, P. M. (2003) Use of lentiviral vectors for delivery of small interfering RNA. Cancer Biol. Ther. 2, 206–210.

    PubMed  CAS  Google Scholar 

  32. Devroe, E. and Silver, P. A. (2002) Retrovirus-delivered siRNA. BMC Biotechnol. 2, 15.

    Article  PubMed  Google Scholar 

  33. Shen, C. and Reske, S. N. (2004) Adenovirus-delivered siRNA. Methods Mol. Biol. 252, 523–532.

    PubMed  CAS  Google Scholar 

  34. Zhao, L. J., Jian, H., and Zhu, H. (2003) Specific gene inhibition by adenovirus-mediated expression of small interfering RNA. Gene 316, 137–141.

    Article  PubMed  CAS  Google Scholar 

  35. Tomar, R. S., Matta, H., and Chaudhary, P. M. (2003) Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22, 5712–5715.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Sidney Altman for providing the U6 promoter plasmid pmU6. We thank our colleagues in the Shi lab for helpful discussion. We also thank Dr. Nathan R. Wall for critically reading the manuscript and Dr. Peter Mulligan for working out the “three-fragment” ligation. G.C.S is supported by a Viral Oncology Training Grant from the NIH (T32CA09031). This work was supported by a grant from the NIH (GM53874) to YS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Sui, G., Shi, Y. (2005). Gene Silencing by a DNA Vector-Based RNAi Technology. In: Carmichael, G.G. (eds) RNA Silencing. Methods in Molecular Biology™, vol 309. Humana Press. https://doi.org/10.1385/1-59259-935-4:205

Download citation

  • DOI: https://doi.org/10.1385/1-59259-935-4:205

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-436-4

  • Online ISBN: 978-1-59259-935-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics