Skip to main content

Quality Criteria in Pesticide Analysis

  • Protocol
Pesticide Protocols

Abstract

There is an increasing concern in pesticide residue analysis laboratories to ensure the quality of their analytical results. Internal quality control (IQC) measures are an essential element to ensure reliable results because they allow both the continuous monitoring of the process and measurements and the elimination of causes of unsatisfactory performance. IQC measures involve the use of blanks, certified reference materials (CRMs), quality control samples, calibrating standards, spiked samples, replicated samples, and blind samples. IQC measures are included in the analytical batch, but it is important not to forget that IQC criteria must be consistent with the cost of analyses, so that the number of IQC measures must not exceed 10% of the total number of samples. Finally, quality criteria in the identification and confirmation of pesticides are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Funk, W., Dammann, V., and Donnevert, G. (1995) Quality Assurance in Analytical Chemistry, VCH, Weinheim.

    Google Scholar 

  2. Günzler, H. (ed.) (1994) Accreditation and Quality Assurance in Analytical Chemistry, Springer-Verlag, Berlin.

    Google Scholar 

  3. International Organisation for Standardisation. (1986) Quality Vocabulary (ISO/IEC Standard 8402), International Organisation for Standardisation, Geneva.

    Google Scholar 

  4. Inczedy, J., Lengyel, T., and Ure, A.M. (1997) Compendium of Analytical Nomenclature. Definitive Rules, 3rd ed., Blackwell Science, Oxford, UK.

    Google Scholar 

  5. Thompson, M., and Wood, R. (1995) Harmonized guidelines for internal quality control in analytical chemistry laboratories (technical report). Pure Appl. Chem. 67, 649–666.

    Article  CAS  Google Scholar 

  6. Analytical Methods Committee. (1989) Principles of data quality control in chemical analysis. Analyst 114, 1497–1503.

    Article  Google Scholar 

  7. Huber, L. (1998) Validation of analytical methods: review and strategy. LC-GC Int. 11, 96–105.

    Google Scholar 

  8. Massart, D. L., Vandeginste, B. G. M., Buydens, L. M. C., de Jong, S., Lewi, P. J., and Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A, Elsevier, Amsterdam.

    Google Scholar 

  9. Swartz, M. and Krull, I. S. (1997) Analytical Method Development and Validation, Dekker, New York.

    Google Scholar 

  10. Feinberg, M. (1996) La Validation des Méthodes D’analyse, Masson, Paris.

    Google Scholar 

  11. Green, J. M. (1996) A practical guide to analytical method validation. Anal. Chem. 68, 305A–309A.

    CAS  Google Scholar 

  12. Jenke, D. R. (1996) Chromatographic method validation: a review of current practices and procedures. I. General concepts and guidelines. J. Liq. Chromatogr. Rel. Technol. 19, 719–736.

    Article  CAS  Google Scholar 

  13. Jenke, D. R. (1996) Chromatographic method validation: a review of current practices and procedures. II. Guidelines for primary validation parameters. J. Liq. Chromatogr. Rel. Technol. 19, 737–757.

    Article  CAS  Google Scholar 

  14. Jenke, D. R. (1996) Chromatographic method validation: a review of current practices and procedures. III. Ruggedness, revalidation and system suitability. J. Liq. Chromatogr. Rel. Technol. 19, 1873–1891.

    Article  CAS  Google Scholar 

  15. http://www.eurachem.ul.pt/guides/CITAC%20EURACHEM%20GUIDE.pdf

  16. S. Reynolds. Quality Control Procedures for Pesticide Residues Analysis. Guidelines for Residues Monitoring in the European Union, 3rd ed., (2003) Document no. SANCO/10476/2003. European Commission. York, United Kingdom.

    Google Scholar 

  17. Eurachem Guide: The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics, (1998). LGC, Teddington, United Kingdom. Also available from the EURACHEM Secretariat and Web site.

    Google Scholar 

  18. Cuadros-Rodríguez, L., Hernández Torres, M. E., Almansa López, E., Egea González, F. J., Arrebola Liébanas, F. J., and Martínez Vidal, J. L. (2002) Assessment of uncertainty in pesticide multiresidue analytical methods: main sources and estimation. Anal. Chim. Acta 454, 297–214.

    Article  Google Scholar 

  19. Thompson, M., Ellison, S.L.R., and Wood, R. (2002) Harmonized Guidelines for singlelaboratory validation of methods of analysis (IUPAC technical report). Pure Appl. Chem. 74, 835–855.

    Article  CAS  Google Scholar 

  20. Williams, A., Ellison, S. L. R., and Roesslein, M. (Eds.). EURACHEM Guide, Quantifying Uncertainty in Analytical Measurement, 2nd ed.,(2000) available at: http://www.eurachem.ul.pt/guides/QUAM2000-1.pdf

  21. International Organisation for Standardisation. (1993) Guide to the Expression of Uncertainty in Measurement, International Organisation for Standardisation, Geneva.

    Google Scholar 

  22. Martínez Vidal, J. L., Garrido Frenich, A., and Egea González, F. J. (2003) Internal quality control criteria for environmental monitoring of organic micro-contaminants in water. Trends Anal. Chem. 22, 34–40.

    Article  Google Scholar 

  23. Keith, L., Libby, R., Crummer, W., Taylor, J., Deegan, J., and Wentler, G., Jr. (1983) Principles of environmental analysis. Anal. Chem. 55, 2210–2218.

    Article  CAS  Google Scholar 

  24. Pérez-Bendito, D. and Rubio, S. (1999) Environmental Analytical Chemistry, Elsevier, Amsterdam.

    Google Scholar 

  25. Quevauviller, P. (ed.). (1995) Quality Assurance in Environmental Monitoring—Sampling and Sample Pre-treatment, VCH, Weinheim.

    Google Scholar 

  26. International Organisation for Standardisation. (1995) ISO Standards Handbook, Statistical Methods for Quality Control, Vol. 2 Measurement Methods and Results. Interpretation of Statistical Data. Process Control, 4th ed., International Organisation for Standardisation, Geneva.

    Google Scholar 

  27. Long, E. L. and Winefordner, J. D. (1983) Limit of detection: a closer look at the IUPAC definition. Anal. Chem. 55, 712–724.

    Article  Google Scholar 

  28. Miller, J. N. (1991) Basic statistical methods for analytical chemistry, Part 2: calibration and regression methods, Analyst 116, 3–14.

    Article  CAS  Google Scholar 

  29. Kellner, R., Mermett, M., Otto, M., Valcárcel, M., and Widmer, H. M. (eds.). (2004) Analytical Chemistry, 2nd ed., Wiley-VCH, Weinheim, chapter 6, p 69–89

    Google Scholar 

  30. Quevauviller, P. (2002). Quality Assurance for Water Analysis, Wiley/European Commission, Brussels.

    Google Scholar 

  31. Taylor, M. J., Hunter, K., Hunter, K., Lindsay, D., and Le Bouhellec, S. (2002) Multiresidue method for rapid screening and confirmation of pesticides in crude extracts of fruits and vegetables using isocratic liquid chromatography with electrospray tandem mass spectrometry. J. Chromatogr. A 982, 225–236.

    Article  CAS  PubMed  Google Scholar 

  32. Zrostlíkivá, J., Hajslová, J., Poustka, J., and Begany, P. (2002) Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatography-electrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials. J. Chromatogr. A 973, 13–26.

    Article  Google Scholar 

  33. Egea González, F. J., Hernández Torres, M. E., Almansa López, E., Cuadros-Rodríguez, L., and Martínez Vidal, J. L. (2002) Matriz effects of vegetable commodities in electróncapture detection applied to pesticide multiresidue analysis. J. Chromatogr. A 966, 155–165.

    Article  PubMed  Google Scholar 

  34. Martínez Vidal, J. L., Arrebola, F. J., Garrido Frenich, A., Martínez Fernández, J., and Mateu-Sanchez, M. (2004) Validation of a gas chromatographic-tandem mass spectrometric method for analysis of pesticide residues in six food commodities. Selection of a reference matrix for calibration. Chomatographia 59, 321–327.

    Google Scholar 

  35. Hernández Torres, M. E., Egea González, F. J., Cuadros-Rodríguez, L., Almansa López, E., and Martínez Vidal, J. L. (2003) Assessment of matrix effects in gas chromatography electron capture pesticide residue analysis. Chromatographia 57, 657–664.

    Article  Google Scholar 

  36. http://www.iupac.org/symposia/conferences/method_validation_4nov99/report.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Frenich, A.G., Vidal, J.L.M., González, F.J.E., Liébanas, F.J.A. (2006). Quality Criteria in Pesticide Analysis. In: Martínez Vidal, J.L., Frenich, A.G. (eds) Pesticide Protocols. Methods in Biotechnology, vol 19. Humana Press. https://doi.org/10.1385/1-59259-929-X:219

Download citation

  • DOI: https://doi.org/10.1385/1-59259-929-X:219

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-410-4

  • Online ISBN: 978-1-59259-929-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics