Skip to main content

Dynamic In Vivo Imaging of Receptors in Small Animals Using Positron Emission Tomography

  • Protocol
Receptor Binding Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 306))

  • 750 Accesses

Abstract

Positron emission tomography (PET) is a functional imaging technique that is used to study biological processes in vivo. Data obtained in a PET scan can provide information regarding tissue physiology or pathophysiology, as well as pharmacokinetic and pharmacodynamic information. It is the most sensitive technique available to image and quantify receptor distributions in vivo, and it has been used extensively to study major neurotransmitter systems such as the dopamine, serotonin, benzodiazepine, opiate, and cholinergic systems (1). Over the years, PET has increasingly been recognized as a very powerful tool to accelerate development and assessment of existing and novel drugs (67).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fowler, J. S., Ding, Y. S., and Volkow, N. D. (2003) Radiotracers for positron emission tomography imaging. Semin. Nucl. Med. 33, 14–27.

    Article  PubMed  Google Scholar 

  2. Farde, L. (1996) The advantage of using positron emission tomography in drug research. Trends Neurosci. 19, 211–214.

    Article  PubMed  CAS  Google Scholar 

  3. Fowler, J. S., Volkow, N. D., Wang, G. J., Ding, Y. S., and Dewey, S. L. (1999) PET and drug research and development. J. Nucl. Med. 40, 1154–1163.

    PubMed  CAS  Google Scholar 

  4. Burns, H. D., Hamill, T. G., Eng, W. S., Francis, B., Fioravanti, C., and Gibson, R. E. (1999) Positron emission tomography neuroreceptor imaging as a tool in drug discovery, research and development. Curr. Opin. Chem. Biol. 3, 388–394.

    Article  PubMed  CAS  Google Scholar 

  5. Aboagye, E. O., Price, P. M., and Jones, T. (2001) In vivo pharmacokinetics and pharmacodynamics in drug development using positron-emission tomography. Drug Discov. Today. 6, 293–302.

    Article  PubMed  CAS  Google Scholar 

  6. Eckelman, W. C. (2002) Accelerating drug discovery and development through in vivo imaging. Nucl. Med. Biol. 29, 777–782.

    Article  PubMed  Google Scholar 

  7. Passchier, J., Gee, A., Willemsen, A., Vaalburg, W., and van Waarde, A. (2002) Measuring drug-related receptor occupancy with positron emission tomography. Methods. 27, 278–286.

    Article  PubMed  CAS  Google Scholar 

  8. Robb, R. A., Hanson, D. P., Karwoski, R. A., Larson, A. G., Workman, E. L., and Stacy, M. C. (1989) Analyze: a comprehensive, operator-interactive software package for multidimensional medical image display and analysis. Comput. Med. Imaging Graph. 13, 433–454.

    Article  PubMed  CAS  Google Scholar 

  9. Logan, J. (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl. Med. Biol. 27, 661–670.

    Article  PubMed  CAS  Google Scholar 

  10. Slifstein, M. and Laruelle, M. (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl. Med. Biol. 28, 595–608.

    Article  PubMed  CAS  Google Scholar 

  11. Lammertsma, A. A. (2002) Radioligand studies: imaging and quantitative analysis. Eur. Neuropsychopharmacol. 12, 513–516.

    Article  PubMed  CAS  Google Scholar 

  12. Zanzonico, P. (2004) Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin. Nucl. Med. 34, 87–111.

    Article  PubMed  Google Scholar 

  13. Ingvar, M., Eriksson, L., Rogers, G. A., Stone-Elander, S., and Widen, L. (1991) Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis. J. Cereb. Blood Flow Metab. 11, 926–931.

    PubMed  CAS  Google Scholar 

  14. Chatziioannou, A. F. (2002) Molecular imaging of small animals with dedicated PET tomographs. Eur. J. Nucl. Med. Mol. Imaging. 29, 98–114.

    Article  PubMed  Google Scholar 

  15. Lewis, J. S., Achilefu, S., Garbow, J. R., Laforest, R., and Welch, M. J. (2002) Small animal imaging: current technology and perspectives for oncological imaging. Eur. J. Cancer. 38, 2173–2188.

    Article  PubMed  Google Scholar 

  16. Matsumura, A., Mizokawa, S., Tanaka, M., et al. (2003) Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage 20, 2040–2050.

    Article  PubMed  Google Scholar 

  17. Toyama, H., Ichise, M., Liow, J. S., et al. (2004) Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl. Med.Biol. 31, 251–256.

    Article  PubMed  CAS  Google Scholar 

  18. Croteau, E., Benard, F., Cadorette, J., et al. (2003) Quantitative gated PET for the assessment of left ventricular function in small animals. J. Nucl. Med. 44, 1655–1661.

    PubMed  Google Scholar 

  19. Shimoji, K., Ravasi, L., Schmidt, K., et al. (2004) Measurement of cerebral glucose metabolic rates in the anesthetized rat by dynamic scanning with 18F-FDG, the ATLAS small animal PET scanner, and arterial blood sampling. J. Nucl. Med. 45, 665–672.

    PubMed  CAS  Google Scholar 

  20. Fryer, T. D., Beech, J. S., Hughes, J. L., et al. (2003) Imaging benzodiazepine receptors in control and stroked rat brains using [11C]flumazenil and microPET. Mol. Imaging Biol. 5, 107–108.

    Google Scholar 

  21. Lapointe, D., Cadorette, J., Rodrigue, S., Rouleau, D., and Lecomte, R. (1998) A microvolumetric blood counter/sampler for metabolic PET studies in small animals. IEEE Trans. Nucl. Sci. 45, 2195–2199.

    Article  Google Scholar 

  22. Zimmer, L., Hassoun, W., Pain, F., et al. (2002) SIC, an intracerebral +-range-sensitive probe for radiopharmacology investigations in small laboratory animals: binding studies with 11C-raclopride. J. Nucl. Med. 43, 227–233.

    PubMed  CAS  Google Scholar 

  23. Huang, S. C., Wu, H. M., Shoghi-Jadid, K., et al. (2004) Investigation of a new input function validation approach for dynamic mouse microPET studies. Mol. Imaging Biol. 6, 34–46.

    Article  PubMed  Google Scholar 

  24. Tai, Y. C., Chatziioannou, A., Siegel, S., et al. (2001) Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys. Med. Biol. 46, 1845–1862.

    Article  PubMed  CAS  Google Scholar 

  25. Kinahan, P. E. and Rogers, J. G. (1989) Analytic 3D image-reconstruction using all detected events. IEEE Trans. Nucl. Sci. 36, 964–968.

    Article  CAS  Google Scholar 

  26. Iwata, R. (2004) Reference book 2004 © for PET radiopharmaceuticals. http:// Kakuyaku.cyric.tohoku.ac.jp/indexe.html. Date accessed: December 9, 2004.

  27. Welch, M. J. and Redvanly, C. S. (Eds.) (2003) Handbook of radiopharmaceuticals—:radiochemistry and applications. John Wiley & Sons Ltd, Chichester.

    Google Scholar 

  28. Johnström, P., Harris, N. G., Fryer, T. D., et al. (2002) 18F-Endothelin-1, a positron emission tomography (PET) radioligand for the endothelin receptor system: radiosynthesis and in vivo imaging using microPET. Clin. Sci. 103(Suppl48), 4S–8S.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Johnström, P., Fryer, T.D., Richards, H.K., Barret, O., Davenport, A.P. (2005). Dynamic In Vivo Imaging of Receptors in Small Animals Using Positron Emission Tomography. In: Davenport, A.P. (eds) Receptor Binding Techniques. Methods in Molecular Biology™, vol 306. Humana Press. https://doi.org/10.1385/1-59259-927-3:217

Download citation

  • DOI: https://doi.org/10.1385/1-59259-927-3:217

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-420-3

  • Online ISBN: 978-1-59259-927-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics