Skip to main content

Radioligand-Binding and Molecular-Imaging Techniques for the Quantitative Analysis of Established and Emerging Orphan Receptor Systems

  • Protocol
  • 803 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 306))

Abstract

Radioligand binding is widely used to characterize receptors and to determine their anatomical distribution, particularly the superfamily of rhodopsinlike, seven-transmembrane-spanning G protein-coupled receptors (GPCRs). More than 200 receptors that transduce many important physiological processes and are the target for about 50% of all drugs have been identified in this family (16) . A further approx 160 or so ″orphan″ GPCRs have been predicted to exist from the human genome and have mRNA sequences characteristic of 7TM GPCRs, but their endogenous ligands await identification. Most of these receptors have been artificially expressed in cell lines linked to a reporter sys- tem to identify when a ligand binds to the receptor (see Chapter 2). This ″re- verse pharmacology″ approach continues to be used to screen compounds from existing or new combinatorial libraries of biologically active molecules, and has been very successful. More than 45 receptors have been ″de-orphanized″ or paired with their cognate ligand, with nearly half of these putative endo- genous transmitters turning out to be peptides (see Table 1). The number of pairings continues to increase. It is estimated that about 70 of the remaining orphan receptors could turn out to have a peptidic ligand (3).

Table 1 Orphan Receptors Recently Paired With Their Cognate Peptidic Ligands

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Reference

  1. Wise, A., Jupe, S. C. and Rees, S. (2004) The identification of ligands at orphan G-protien coupled receptors. Annu. Rev. Pharmacol. Toxicol. 44, 43–66.

    Article  PubMed  CAS  Google Scholar 

  2. Katugampola, S., and Davenport, A. P. (2003) Emerging roles for orphan G-protein-coupled receptors in the cardiovascular system. Trends Pharmacol. Sci. 24, 30–35.

    Article  PubMed  CAS  Google Scholar 

  3. Davenport, A. P. (2003) Peptide and trace amine orphan receptors: prospects for new therapeutic targets. Curr. Opin Pharmacol. 3, 127–134.

    Article  PubMed  CAS  Google Scholar 

  4. Davenport, A. P., and Macphee, C. H. (2003) Translating the human genome: renaissance of cardiovascular receptor pharmacology. Curr. Opin. Pharmacol. 3, 111–113.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, D. K., George, S. R., and O’Dowd, B. F. (2003) Continued discovery of ligands for G protein-coupled receptors. Life Sci. 74, 293–297.

    Article  PubMed  CAS  Google Scholar 

  6. Katugampola, S. D., Maguire, J. J., Kuc, R. E., Wiley, K. E., and Davenport, A. P. (2002) Discovery of recently adopted orphan receptors for apelin, urotensin II,and ghrelin identified using novel radioligands and functional role in the human cardiovascular system. Can. J. Physiol. Pharmacol., 80, 369–374.

    Article  PubMed  CAS  Google Scholar 

  7. Davenport, A. P., O’Reilly, G., Molenaar, P., Maguire, J. J. Kuc, R. E., Sharkey, A., et al. (1993) Human endothelin receptors characterised using reverse transcriptase-polymerase chain reaction, in situ hybridization and sub-type selective ligands BQ123 and BQ3020: evidence for expression of ETB receptors in human vascular smooth muscle. J. Cardiovasc. Pharmacol. 22(S8), 22–25.

    Article  Google Scholar 

  8. Molenaar, P., O’Reilly, G., Sharkey, A., Kuc, R.E., Harding, D.P., Plumpton, P.,et al. (1993) Characterization and localization of endothelin receptor sub-types in the human atrio-ventricular conducting system and myocardium. Circ. Res. 72, 526–538.

    PubMed  CAS  Google Scholar 

  9. Davenport, A. P., O’Reilly G., and Kuc, R. E. (1995) Endothelin ETA and ETB mRNA and receptors expressed by smooth muscle in the human vasculature: majority of the ETA sub-type. Br. J. Pharmacol. 114, 1110–1116.

    PubMed  CAS  Google Scholar 

  10. Maguire, J. J., Kuc, R. E., and Davenport, A. P. (2000) Orphan-receptor ligand human urotensin ii: receptor localization in human tissues and comparison of vasoconstrictor responses with endothelin-1. Br. J. Pharmacol. 131, 441–446.

    Article  PubMed  CAS  Google Scholar 

  11. Maguire, J. J., and Davenport, A. P. (2002) Is urotensin-II the new endothelin? Br. J. Pharmacol. 137, 579–588.

    Article  PubMed  CAS  Google Scholar 

  12. aguire, J. J., Kuc, R. E., Wiley, K. E., Kleinz, M. J., and Davenport, A. P. (2004) Cellular distribution of immunoreactive urotensin-II in human tissues with evidence of increased expression in atherosclerosis and a greater constrictor response of small compared to large coronary arteries. Peptides 25, 1767–177

    Article  Google Scholar 

  13. Singh, G. Maguire, J. J., Kuc, R. E., Wiley, K. E., Fidock, M., and Davenport, A.P. (2004) Identification and cellular localization of NPW (GPR7) receptors for the novel neuropeptide W-23 by [125I]-NPW-23 radioligand binding and immunocytochemistry. Brain Res., 1017, 222–226.

    Article  PubMed  CAS  Google Scholar 

  14. Katugampola, S. D., Maguire, J. J., Matthewson, S. R., and Davenport, A. P. (2001) [125I]-(Pyr1)apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br. J. Pharmacol. 132, 1255–1260.

    Article  PubMed  CAS  Google Scholar 

  15. Kleinz, M. J. and Davenport, A. P. (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul. Pept. 118, 119–125.

    Article  PubMed  CAS  Google Scholar 

  16. Katugampola, S. D., Pallikaros, Z., and Davenport, A. P. (2001) [125I-His9]-ghrelin, a novel radioligand for localizing ghs orphan receptors in human and rat tissue:Up-regulation of receptors with athersclerosis. Br. J. Pharmacol. 134, 143–149.

    Article  PubMed  CAS  Google Scholar 

  17. Kuc, R. E., Davies, I. C. and Davenport, A. P. (2003) Motilin receptors in the human cardiovascular system. Br. J. Pharmacol. 138, 165P.

    Google Scholar 

  18. Wiley, K. E., and Davenport, A. P. (2003) Detection of CRF2 receptors in human heart using [125]-antisauvagine 30. Br. J. Pharmacol. 138, 16P.

    Google Scholar 

  19. Telemaque-Potts, S., Kuc, R. E., Yanagisawa, M., and Davenport, A. P. (2000) Tissue-specific modulation of endothelin receptors in a rat model of hypertension. J. Cardiovasc. Pharmacol. 36(S1), 122–123.

    Google Scholar 

  20. Telemaque-Potts, S., Kuc, R. E., Maguire, J. J., Ohlstein, E., Yanagisawa, M., and Davenport, A. P. (2002) Elevated systemic levels of endothelin-1 and blood pressure correlate with blunted constrictor responses and downregulation of endothelin A, but not endothelin B, receptors in an animal model of hypertension. Clin Sci(Lond). 103Suppl 48, 357S–362S.

    CAS  Google Scholar 

  21. Davenport, A. P. and Kuc, R. E. (2004) Downregulation of ETA receptors inETB receptor deficient mice. J. Cardiovasc. Pharmacol. 43,Suppl 1, in press.

    Google Scholar 

  22. Kuc, R. E., and Davenport A. P. (2000) Endothelin-A-receptors in human aortaand pulmonary arteries are down regulated in patients with cardiovascular disease: An adaptive response to increased levels of ET-1? J. Cardiovasc.Pharmacol. 36(S1), 377–379.

    Google Scholar 

  23. Kutzler, M. A., Molnar, J., Schlafer, D. H., Kuc, R. E., Davenport, A. P. and Nathanielsz, P. W. (2003) Maternal dexamethasone increases endothelin-1 sensitivity and endothelin a receptor expression in ovine foetal placental arteries. Placenta 24, 392–402.

    Article  PubMed  CAS  Google Scholar 

  24. Davenport, A. P. (2002) International Union of Pharmacology. XXIX. Update on endothelin receptor nomenclature. Pharmacol. Rev. 54, 219–22

    Article  PubMed  CAS  Google Scholar 

  25. Davenport, A. P. and Russell, F. D. (2001) Endothelin converting enzymes and endothelin receptor localisation in human tissues. Hdbk. Exp. Pharmacol. 152, 209–237.

    CAS  Google Scholar 

  26. Davenport, A. P., Kuc, R. E., Fitzgerald, F., Maguire, J. J., Berryman, K. and Doherty, A. M. (1994) [125I]-PD15242, a selective radioligand for human ETA receptors. Br. J. Pharmacol. 111, 4–6.

    PubMed  CAS  Google Scholar 

  27. Davenport, A. P., Kuc, R. E., Hoskins, S. L., Karet, F. E. and Fitzgerald, F. (1994) [125I]-PD151242: a selective ligand for endothelin ETA receptors in human kidney which localises to renal vasculature. Brit. J. Pharmacol. 113, 1303–1310.

    CAS  Google Scholar 

  28. Peter, M. G. and Davenport, A. P. (1995) Selectivity of [125I]-PD151242 for the human, rat and porcine endothelin ETA receptors in the heart. Brit. J. Pharmacol. 114, 297–302.

    CAS  Google Scholar 

  29. Hulme, E. (1992) Receptor-Ligand Interactions. IRL, Oxford, UK.

    Google Scholar 

  30. Kenakin, T. (1993) Pharmacologic Analysis of Drug-Receptor Interactions. Raven Press, New York, USA.

    Google Scholar 

  31. Kenakin, T. (2004) Principles: receptor theory in pharmacology. Trends Pharmacol. Sci. 25, 186–192.

    Article  PubMed  CAS  Google Scholar 

  32. Neubig, R. R., Spedding, M., Kenakin, T., and Christopoulos, A. (2003) International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol. Rev11. 55, 597–606.

    Article  CAS  Google Scholar 

  33. Munson, P. J. and Rodbard, D. (1980) Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107, 220–239.

    Article  PubMed  CAS  Google Scholar 

  34. McPherson, G. A. (1985) Analysis of radioligandbinding experiments. Acollection of computer programs for the IBM PC. J. Pharmacol. Methods 14, 213–228.

    Article  PubMed  CAS  Google Scholar 

  35. Davenport, A. P. and Hall, M. D. (1988) Comparison between brain paste and polymer standards for quantitative receptor autoradiography. J. Neurosci. Meth. 25, 75–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Davenport, A.P., Kuc, R.E. (2005). Radioligand-Binding and Molecular-Imaging Techniques for the Quantitative Analysis of Established and Emerging Orphan Receptor Systems. In: Davenport, A.P. (eds) Receptor Binding Techniques. Methods in Molecular Biology™, vol 306. Humana Press. https://doi.org/10.1385/1-59259-927-3:093

Download citation

  • DOI: https://doi.org/10.1385/1-59259-927-3:093

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-420-3

  • Online ISBN: 978-1-59259-927-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics