Skip to main content

Quantitative Analysis of Orphan G Protein-Coupled Receptor mRNAs by TaqMan® Real-Time PCR

G2A and GPR4 Lysophospholipid Receptor Expression in Leukocytes and in a Rat Myocardial Infarction-Heart Failure Model

  • Protocol
Receptor Binding Techniques

Abstract

Historically, the G protein-coupled receptor (GPCR) protein family has proven to be an extremely tractable target class (1). It is estimated that approximately one-half of all drugs currently marketed exert their actions, either directly or indirectly, via GPCRs (2). Given the potential commercial opportunities emanating from the identification of small molecule modulators of “novel” GPCRs (currently, GPCRs generate in excess of $25 billion per year in worldwide sales revenue [3]), it is not surprising that it is with great enthusiasm that both the pharmaceutical industry and academia move toward identifying novel members of this protein class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas, S. A., Ohlstein, E. H., and Johns, D. G. (2004) Cardiovascular pharmacology and drug discovery in the 21st century. Trends Pharmacol. Sci. 25, 225–233.

    Article  PubMed  CAS  Google Scholar 

  2. Bleicher, K. H., Bohm, H. J., Muller, K., and Alanine, A. I. (2003). Hit and lead generation: beyond high-throughput screening. Nat. Rev. Drug Disc. 2, 369–378.

    Article  CAS  Google Scholar 

  3. Robas, N., O’Reilly, M., Katugampola, S., and Fidock, M. (2003). Maximizing serendipity: strategies for identifying ligands for orphan G-protein-coupled receptors. Curr. Opin. Pharmacol. 3, 121–126.

    Article  PubMed  CAS  Google Scholar 

  4. Cacace, A., Banks, M., Spicer, T., Civoli, F., and Watson, J. (2003) An ultra-HTS process for the identification of small molecule modulators of orphan G-protein coupled receptors. Drug Disc. Today 8, 785–792.

    Article  CAS  Google Scholar 

  5. Zhu, K., Baudhuin, L.M., Hong, G., (2001) Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J.Biol. Chem., 276, 41,325–41,335.

    Article  PubMed  CAS  Google Scholar 

  6. Kabarowski, J. H., Zhu, K., Le, L. Q., Witte, O. N., and Xu, Y. (2001) Zysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science, 293, 702–705.

    Article  PubMed  CAS  Google Scholar 

  7. Gräler, M. H. and Goetzl, E. J. (2002) Lysophospholipids and their G-protein coupled receptors in inflammation and immunity. Biochim. Biophys. Acta 1582, 168–174.

    PubMed  Google Scholar 

  8. Xu, Y. (2002). Sphingosylphosphorylcholine and lysophosphatidylcholine: G-protein-coupled receptors and receptor-mediated signal transduction. Biochim.Biophys. Acta, 1582, 81–88.

    PubMed  CAS  Google Scholar 

  9. Ross, R. (1999). Atherosclerosis: an inflammatory disease. New Engl. J. Med., 340, 115–126.

    Article  PubMed  CAS  Google Scholar 

  10. Frangogiannis, N.G., Smith, C.W., and Entman, M.L. (2002). The inflammatory response in myocardial infarction. Cardiovasc. Res., 53, 31–47.

    Article  PubMed  CAS  Google Scholar 

  11. Wilson, S., Bergsma, D.J., Chambers, J.K., (1998). Orphan G-protein-coupled receptors: the next generation of drug targets? Br. J. Pharmacol., 125, 1387–1392.

    Article  PubMed  CAS  Google Scholar 

  12. Lindsay, M.A. (2003). Target discovery. Nature Rev., 2, 831–838.

    Article  CAS  Google Scholar 

  13. Holland, P.M., Abramson, R.D., Watson, R., and Gelfand, D.H. (1991). Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA 88, 7276–7280.

    Article  PubMed  CAS  Google Scholar 

  14. Heid, C.A., Stevens, J., Livak, K. J., and Williams, P.M. (1996). Real time quantitative PCR. Genome Res., 6, 986–994.

    Article  PubMed  CAS  Google Scholar 

  15. Sambrook, J., Fritsch, E.F., and Maniatis, T. (eds.) (1989) Molecular Cloning: ALaboratory Manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, NY.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Douglas, S.A. et al. (2005). Quantitative Analysis of Orphan G Protein-Coupled Receptor mRNAs by TaqMan® Real-Time PCR. In: Davenport, A.P. (eds) Receptor Binding Techniques. Methods in Molecular Biology™, vol 306. Humana Press. https://doi.org/10.1385/1-59259-927-3:027

Download citation

  • DOI: https://doi.org/10.1385/1-59259-927-3:027

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-420-3

  • Online ISBN: 978-1-59259-927-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics