Live Cell Imaging of G Protein-Coupled Receptors

  • Burkhard Wiesner
  • Michael Beyermann
  • Alexander Oksche
Part of the Methods in Molecular Biology™ book series (MIMB, volume 306)


In recent years, the endocytosis and the intracellular trafficking of many G protein-coupled receptors (GPCRs) have been evaluated. A milestone in the analysis of the transport of GPCRs was the molecular cloning of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria by Prasher and coworkers (1, 2). Site-directed mutagenesis yielded derivatives with higher photostability, improved quantum yield, and different excitation/emission spectra (3, 4, 5).For the generation of GPCR.GFP fusion proteins, the cDNA encoding GFP is in almost all cases genetically fused in frame to the 'end of cDNA encoding the GPCR (6). The encoded fusion protein comprises a GPCR with the GFP moiety fused to its intracellular C-terminus. Although GFP is a relatively large protein (238 amino acids, 26.9 kDa) and its size is almost equal to that of most GPCRs (about 400 amino acids), the functional properties (ligand affinity, signal transduction, or intracellular trafficking) of GPCRs are not, or are only slightly, altered (6, 7, 8). Thus, GFP and its derivatives have been widely applied as fluorescent probes to visualize trafficking of GPCRs in real time, to analyze GPCRs' mobility by fluorescence recovery after photobleaching (FRAP; 9), and to study protein-protein interactions of GPCRs by fluorescence resonance energy transfer (FRET; 10, 11). The relatively high stability of GFP and its chromophore in the presence of detergents and fixatives also allows the use of GPCR.GFP fusion proteins in co-localization studies with immunocytochemistry.


Fusion Protein Green Fluorescent Protein Fluorescence Resonance Energy Transfer Yellow Fluorescent Protein Cyan Fluorescent Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233.PubMedCrossRefGoogle Scholar
  2. 2.
    Prasher, D.C. (1995) Using GFP to see the light. Trends Genet. 11, 320–323.PubMedCrossRefGoogle Scholar
  3. 3.
    Tsien, R.Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang, J., Campbell, R.E., Ting, A.Y., and Tsien, R.Y. (2002) Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell. Biol. 3, 906–918.PubMedCrossRefGoogle Scholar
  5. 5.
    Ellenberg, J., Lippincott-Schwartz, J., Presley, J.F. (1999) Dual-colour imaging with GFP variants. Trends Cell Biol. 9, 52–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Kallal, L., and Benovic, J.L. (2000) Using green fluorescent proteins to study G protein-coupled receptor localization and trafficking. Trends Pharmacol. Sci. 21, 175–180.PubMedCrossRefGoogle Scholar
  7. 7.
    Milligan, G. (1999) Exploring the dynamics of regulation of G protein-coupled receptors using green fluorescent protein. Br. J. Pharmacol. 128, 501–510.PubMedCrossRefGoogle Scholar
  8. 8.
    Milligan, G. (2000) Insights into ligand pharmacology using receptor-G-protein fusion proteins. Trends Pharmacol. Sci. 21, 24–28.PubMedCrossRefGoogle Scholar
  9. 9.
    Azpiazu, I. and Gautam, N. (2004) A FRET based sensor indicates that receptor access to a G-protein is unrestricted in a living mammalian cell. J. Biol. Chem. 279, 27,709–27,718.PubMedCrossRefGoogle Scholar
  10. 10.
    Overton, M.C. and Blumer, K.J. (2002) Use of fluorescence resonance energy transfer to analyze oligomerization of G protein-coupled receptors expressed in yeast. Methods 27, 324–332.PubMedCrossRefGoogle Scholar
  11. 11.
    Gregan, B., Jürgensen, J., Papsdorf, G., et al. (2004) Ligand-dependent differences in the internalization of endothelin A and endothelin B receptor heterodimers. J. Biol. Chem. 279, 27,679–27,687.PubMedCrossRefGoogle Scholar
  12. 12.
    Baird, G.S., Zacharias, D.A., and Tsien, R.Y. (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11,984–11,989.PubMedCrossRefGoogle Scholar
  13. 13.
    Daly, C.J. and McGrath, J.C. (2003) Fluorescent ligands, antibodies, and proteins for the study of receptors. Pharmacol. Ther. 100, 101–118.PubMedCrossRefGoogle Scholar
  14. 14.
    Oksche, A., Boese, G., Horstmeyer, A., et al. (2000) Late endosomal/lysosomal targeting and lack of recycling of the ligand-occupied endothelin B (ETB) receptor. Mol. Pharmacol. 57, 1104–1113.PubMedGoogle Scholar
  15. 15.
    Ferguson, S. S. (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1–24.PubMedGoogle Scholar
  16. 16.
    Ferguson, S.S., Zhang, J., Barak, L.S. and Caron, M.G. (1998) Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci. 62, 1561–1565.PubMedCrossRefGoogle Scholar
  17. 17.
    Gurevich, V.V. and Gurevich, E.V. (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol. Sci. 25, 105–111.PubMedCrossRefGoogle Scholar
  18. 18.
    Ferguson, S.S., and Caron, M.G. (2004) Green fluorescent protein-tagged B-arrestin translocation as a measure of G protein-coupled receptor activation. Methods Mol. Biol. 237, 121–126.PubMedGoogle Scholar
  19. 19.
    Luttrell, L.M. and Lefkowitz, R.J. (2002) The role of ß-arrestins in the termination and transduction of G protein-coupled receptor signals. J. Cell Sci. 115, 455–465.PubMedGoogle Scholar
  20. 20.
    Mousavi, S. A., Malerod, L., Berg, T. and Kjeken, R. (2004) Clathrin-dependent endocytosis. Biochem. J. 377, 1–16.PubMedCrossRefGoogle Scholar
  21. 21.
    Schulz, R., Wehmeyer, A., and Schulz, K. (2002) Opioid receptor types selectively cointernalize with G protein-coupled receptor kinases 2 and 3. J. Pharmacol. Exp. Ther. 300, 376–384.PubMedCrossRefGoogle Scholar
  22. 22.
    Barak, L.S., Wilbanks, A.M., and Caron, M.G. (2003) Constitutive desensitization: a new paradigm for G protein-coupled receptor regulation. Assay Drug Dev. Technol. 1, 339–346.PubMedCrossRefGoogle Scholar
  23. 23.
    Janovick, J.A., Maya-Nunez, G., and Conn, P.M. (2002) Rescue of hypogonadotropic hypogonadism-causing and manufactured GnRH receptor mutants by a specific protein-folding template: misrouted proteins as a novel diseaseetiology and therapeutic target. J. Clin. Endocrinol. Metab. 87, 3255–3262PubMedCrossRefGoogle Scholar
  24. 24.
    Morello, J.P., Salahpour, A., Laperriere, A., et al. (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895.PubMedCrossRefGoogle Scholar
  25. 25.
    Noorwez, S.M., Kuksa, V., Imanishi, Y., et al. (2003) Pharmacological chaper-one-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J. Biol. Chem. 278, 14,442–14,450.PubMedCrossRefGoogle Scholar
  26. 26.
    Wüller, S., Wiesner, B., Löffler, A., et al. Pharmacochaperones posttranslationally enhance cell surface expression by increasing conformational stability of wild-type and mutant vasopressin V2 receptors. J. Biol. Chem. 279, 47,254–47,263.Google Scholar
  27. 27.
    Vilardaga, J.-P., Bünemann, M., Krasel, C., Castro, M. and Lohse, J.L. (2003) Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nature Biotech. 21, 807–812.CrossRefGoogle Scholar
  28. 28.
    Damke, H., Baba, T., Warnock, D.E., and Schmid, S.L. (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934.PubMedCrossRefGoogle Scholar
  29. 29.
    Gordon, G.W., Berry, G., Liang, X.H., Levine, B., and Herman, B. (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713.PubMedCrossRefGoogle Scholar
  30. 30.
    Petaja-Repo, U.E., Hogue, M., Bhalla, S., Laperriere, A., Morello, J.P. and Bouvier, M. (2002) Ligands act as pharmacological chaperones and increase the efficiency of delta opioid receptor maturation. EMBO J. 21, 1628–1637.PubMedCrossRefGoogle Scholar
  31. 31.
    Lenz, J.C., Reusch, H.P., Albrecht, N., Schultz, G., and Schaefer, M. (2002) Ca2+-controlled competitive diacylglycerol binding of protein kinase C isoenzymes in living cells. J. Cell Biol. 159, 291–302.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Burkhard Wiesner
    • 1
  • Michael Beyermann
    • 1
  • Alexander Oksche
    • 2
  1. 1.Forschungsinstitut für Molekulare PharmakologieBerlinGermany
  2. 2.Institut für PharmakologieCharité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations