Skip to main content

Molecular Diagnostic Testing for Inherited Thrombophilia Using Invader®

  • Protocol
  • 484 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 114))

Abstract

Physicians in the United States and Europe began testing patients who had idiopathic thrombotic events for inherited risk factors in 1990s. The College of American Pathologists (CAP) offered proficiency testing for molecular genetic screening for thrombophilia in 1997. Today, a hypercoagulable workup including screening for inherited thrombophilia defects is becoming part of the standard of care in many parts of the world (1). Who, what, and when to test continue to be controversial and challenging questions (2); however, laboratories developing new or improved mutation detection methodologies have used the most commonly screened inherited thrombophilia polymorphism, factor V Leiden (R506Q), for many years (3). In the most recent CAP survey (MGL-A 2003), the most commonly employed method used in one-third of all participating clinical laboratories testing for factor V Leiden and prothrombin G20210A was the non-PCR-based method called Invader®, developed by Third Wave Technologies. The remainder of the clinical laboratories reported testing for these variants using PCR-restriction fragment length polymorphism (RFLP), allele-specific PCR, and allele-specific hybridization. Emerging mutation detection technologies include DNA resequencing approaches such as pyrosequencing (4) fluorescence polarization detection (5), genotyping on microelectronic DNA chips like Nanogen’s nanochip (6), and oligonucleotide hybridization with photocrosslinking (7). Invader technology is currently a medium-throughput, 96-well plate format assay that is sufficient for most hospital clinical laboratories. Although this assay format is not currently performed in a microarray format, Invader is amenable to performance on a solid support; specifically, the reaction can be performed on the surface of microspheres and the resulting fluorescence measured using flow cytometry (8). This chapter presents the method as well as some suggestions for utilizing the Invader system for mutation/polymorphism screening in general and for thrombophilia testing in particular.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bauer, K. A., Rosendaal, F. R., and Heit, J. A. (2002) Hypercoagulability: too many tests, too much conflicting data. Hematology (Am Soc Hematol Educ Program), 353-368.

    Google Scholar 

  2. Jennings, I., and Cooper, P. (2003) Screening for thrombophilia: a laboratory perspective. Br. J. Biomed Sci. 60, 39–51.

    PubMed  CAS  Google Scholar 

  3. Dahlback, B. (2003). The discovery of activated protein C resistance. J. Thromb. Haemost. 1, 3–9.

    Article  PubMed  CAS  Google Scholar 

  4. Fakhrai-Rad, H., Pourmand, N., and Ronaghi, M. (2002) Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum. Mutat. 19, 479–485.

    Article  PubMed  CAS  Google Scholar 

  5. Hsu, T. M., and Kwok, P. Y. (2003). Homogeneous primer extension assay with fluorescence polarization detection. Methods Mol. Biol. 212, 177–187.

    PubMed  CAS  Google Scholar 

  6. Santacroce, R., Ratti, A., Caroli, F., et al. (2002). Analysis of clinically relevant single-nucleotide polymorphisms by use of microelectronic array technology. Clin. Chem. 48, 2124–2130.

    PubMed  CAS  Google Scholar 

  7. French, C. L. C., Strom, C, Sun, W, Van Atta, R, Gonzalez, B, Wood, M. (2004). Detection of the factor V Leiden mutation by a modified photo-cross-linking oligonucleotide hybridization assay. Clin. Chem. 50, 296–305.

    Article  PubMed  CAS  Google Scholar 

  8. Rao, K. V., Stevens, P. W., Hall, J. G., Lyamichev, V., Neri, B. P., Kelso, D. M. (2003). Genotyping single nucleotide polymorphisms directly from genomic DNA by invasive cleavage reaction on microspheres. Nucleic Acids. Res 31, e66.

    Article  PubMed  Google Scholar 

  9. Bertina, R. M., Koster, T., F. Rosendaal, F. R., et al. (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369, 64–67.

    Article  PubMed  CAS  Google Scholar 

  10. Bertina, R. M., Reitsma, P. H., Rosendaal, F. R., and Vandenbroucke, J. P. (1995). Resistance to activated protein C and factor V Leiden as risk factors for venous thrombosis. Thromb. Haemost. 74, 449–453.

    PubMed  CAS  Google Scholar 

  11. Rosendaal, F. R., Koster, T., Vandenbroucke, J. P., and Reitsma, P. H. (1995). High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 85, 1504–1508.

    PubMed  CAS  Google Scholar 

  12. Vandenbroucke, J. P., Koster, T., Briet, E., Reitsma, P. H., Bertina, R. M., and Rosendaal, F. R. (1994). Increased risk of venous thrombosis in oral-contraceptive users who are carriers of factor V Leiden mutation. Lancet 344, 1453–1457.

    Article  PubMed  CAS  Google Scholar 

  13. Ridker, P. M., Miletich, J. P., Hennekens, C. H., and Buring, J. E. (1997). Ethnic distribution of factor V leiden in 4047 men and women: implications for venous thromboembolism screening. JAMA 277, 1305–1307.

    Article  PubMed  CAS  Google Scholar 

  14. Poort, S. R., Rosendaal, F. R., Reitsma, P. H., and Bertina, R. M. (1996). A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88, 3698–3703.

    PubMed  CAS  Google Scholar 

  15. Ceelie, H., Riel, C. C. S.-v., Bertina, R. M., & Vos, H. L. (2004). G20210A is a functional mutation in the prothrombin gene; effect on protein levels and 3′-end formation. J. Thromb. Haemost. 2, 119–127.

    Article  PubMed  CAS  Google Scholar 

  16. Pollak, E. S., Lam, H. S., Russell, J. E. (2002). The G20210A mutation does not affect the stability of prothrombin mRNA in vivo. Blood 100, 359–362.

    Article  PubMed  CAS  Google Scholar 

  17. Ferraresi, P., Marchetti, G., Legnani, C., et al. (1997) The heterozygous 20210 G/A prothrombin genotype is associated with early venous thrombosis in inherited thrombophilias and is not increased in frequency in artery disease. Arterioscler. Thromb. Vasc. Biol. 17, 2418–2422.

    PubMed  CAS  Google Scholar 

  18. Franco, R. F., Santos, S. E., Elion, J., Tavella, M. H., & Zago, M. A. (1998). Prevalence of the G20210A polymorphism in the 3′-untranslated region of the prothrombin gene in different human populations. Acta Haematol. 100, 9–12.

    Article  PubMed  CAS  Google Scholar 

  19. den Heijer, M., Koster, T. and Blom, H. J. P. B., et al. (1996). Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. New England J Med 334, 759–762.

    Article  Google Scholar 

  20. den Heijer, M. (2003). Hyperhomocysteinaemia as a risk factor for venous thrombosis: an update of the current evidence. Clin. Chem. Lab. Med. 41, 1404–1407.

    Article  Google Scholar 

  21. Tsai, M. Y., Bignell, M., Yang, F., Welge, B. G., Graham, K. J., & Hanson, N. Q. (2000). Polygenic influence on plasma homocysteine: association of two prevalent mutations, the 844ins68 of cystathionine beta-synthase and A(2756)G of methionine synthase, with lowered plasma homocysteine levels. Atherosclerosis 149, 131–137.

    Article  PubMed  CAS  Google Scholar 

  22. Frosst, P., Blom, H. J., Milos, R. et al. (1995). A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10, 111–113.

    Article  PubMed  CAS  Google Scholar 

  23. Tsai, A. W., Cushman, M., Tsai, M. Y., et al. (2003). Serum homocysteine, thermolabile variant of methylene tetrahydrofolate reductase (MTHFR), and venous thromboembolism: longitudinal investigation of thromboembolism etiology (LITE). Am. J. Hematol. 72, 192–200.

    Article  PubMed  CAS  Google Scholar 

  24. van der put, N. M. J., Gabreels, F., Erik, M. B., et al. (1998). A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am. J. Hum. Genet. 62, 1044–1051.

    Article  PubMed  Google Scholar 

  25. Kluijtmans, L. A., and Whitehead, A. S. (2001). Methylenetetrahydrofolate reductase genotypes and predisposition to atherothrombotic disease; evidence that all three MTHFR C677T genotypes confer different levels of risk. Eur. Heart J. 22, 294–299.

    Article  PubMed  CAS  Google Scholar 

  26. Girelli, D., Martinelli, N., Pizzolo, F., et al. (2003). The interaction between MTHFR 677 C → T genotype and folate status is a determinant of coronary atherosclerosis risk. J. Nutr. 133, 1281–1285.

    PubMed  CAS  Google Scholar 

  27. Geisel, J., Hubner, U., Bodis, M., et al. (2003). The role of genetic factors in the development of hyperhomocysteinemia. Clin. Chem. Lab. Med. 41, 1427–1434.

    Article  PubMed  CAS  Google Scholar 

  28. Nishio, H., Lee, M. J., Fujii, M., et al. (1996). A common mutation in methylenetetrahydrofolate reductase gene among the Japanese population. Jpn. J. Hum. Genet. 41, 247–251.

    Article  PubMed  CAS  Google Scholar 

  29. McAndrew, P. E., Brandt, J. T., Pearl, D. K., and Prior, T. W. (1996). The incidence of the gene for thermolabile methylene tetrahydrofolate reductase in African Americans. Thromb. Res. 83, 195–198.

    Article  PubMed  CAS  Google Scholar 

  30. Esfahani, S. T., Cogger, E. Z., & Caudill, M. A. (2003). Heterogeneity in the prevalence of methylenetetrahydrofoalte reductase gene polymorphisms in women of different ethnic groups. J. Am. Diet. Assoc. 103, 200–207.

    Article  PubMed  Google Scholar 

  31. Salomon, O. S. D., Zivelin A., Gitel, S., et al. (1999). Single and combined prothrombotic factors in patients with idiopathic venous thromboembolism: prevalence and risk assessment. Arterioscler. Thromb. Vasc. Biol. 34, 1821–1826.

    Google Scholar 

  32. Jerrard-Dunne, P. E. A., McGovern, R, Hajat, C., et al. (2003). Ethnic differences in markers of thrombophilia: implications for the investigation of ischemic stroke in multiethnic populations: the South London Ethnicity and Stroke Study. Stroke 34, 1821–1826.

    Article  PubMed  Google Scholar 

  33. Patel, R. K., Ford, E., Thumpston, J., & Arya, R. (2003). Risk factors for venous thrombosis in the black population. Thromb. Haemost. 90, 835–838.

    PubMed  CAS  Google Scholar 

  34. Morange, P. E., Tregouet, D. A., Frere, C., et al. (2005). Biological and genetic factor’s influencing plasma factor VIII levels in a healthy family population: results from the Stanislas cohort. Br. J. Haematol. 128, 91–99.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Keller, M.A. (2005). Molecular Diagnostic Testing for Inherited Thrombophilia Using Invader®. In: Joos, T.O., Fortina, P. (eds) Microarrays in Clinical Diagnostics. Methods in Molecular Medicine™, vol 114. Humana Press. https://doi.org/10.1385/1-59259-923-0:107

Download citation

  • DOI: https://doi.org/10.1385/1-59259-923-0:107

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-394-7

  • Online ISBN: 978-1-59259-923-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics