Advertisement

Single-Nucleotide Polymorphism and Mutation Identification by the Nanogen Microelectronic Chip Technology

  • Maurizio Ferrari
  • Laura Cremonesi
  • Pierangelo Bonini
  • Barbara Foglieni
  • Stefania Stenirri
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 114)

Abstract

The present chapter describes a microarray technology developed by Nanogen Inc., for the identification of DNA variations based on the use of microelectronics.

The NMW 1000 NanoChip™ Molecular Biology Workstation allows the active deposition and concentration of charged biotinylated molecules on designated test sites. The DNA at each pad is then hybridized with specific oligonucleotide probes, complementary to normal or mutant sequences, that labeled with Cy3 or Cy5 dyes, respectively. The array is imaged, and fluorescence signals are scanned, monitored, and quantified by highly developed, digital image-processing procedures. The experimental steps to be performed for the development and execution of a microchip assay are described. Attention is focused on the fundamental aspects of probe design, and guidelines and useful suggestions are given. Protocols for sample preparation, addressing, reporting, and data analysis are also detailed.

Key Words

Microarray microelectronic Nanogen SNPs mutation 

Notes

Acknowledgment

This work was supported by Amplimedical S.p.A. Diagnostic Group, Italy and FIRB grant RBNE01SLRJ (to M. Ferrari).

References

  1. 1.
    Ferrari, M., Stenirri, S., Bonini, P., and Cremonesi, L. (2003) Molecular diagnostics by microelectronic microchips. Clin. Chem. Lab. Med. 41, 462–467.PubMedCrossRefGoogle Scholar
  2. 2.
    Edman, C. F., Raymond, D. E., Wu, D. J., et al. (1997) Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res. 25, 4907–4914.PubMedCrossRefGoogle Scholar
  3. 3.
    Sosnowski, R. G., Tu, E., Butler, W. F., O’Connell, J. P., and Heller, M. J. (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl. Acad. Sci. USA 94, 1119–1123.PubMedCrossRefGoogle Scholar
  4. 4.
    Gilles, P. N., Wu, D. J., Foster, C. B., Dillon, P. J., and Chanock, S. J. (1999) Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nat. Biotechnol. 17, 365–370.PubMedCrossRefGoogle Scholar
  5. 5.
    Heller, M. J., Forster, A. H., and Tu, E. (2000) Active microeletronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications. Electrophoresis 21, 157–164.PubMedCrossRefGoogle Scholar
  6. 6.
    Santacroce, R., Ratti, A., Caroli, F., et al. (2002) Analysis of clinically relevant single-nucleotide polymorphisms by use of microelectronic array technology. Clin. Chem. 48, 2124–2130.PubMedGoogle Scholar
  7. 7.
    Foglieni, B., Cremonesi, L., Travi, M., et al. (2004) Beta-thalassemia microelectronic chip: a fast and accurate method for mutation detection. Clin. Chem. 50, 73–79.PubMedCrossRefGoogle Scholar
  8. 8.
    Pollak, E. S., Feng, L., Ahadian, H., and Fortina, P. (2001) Microarray-based genetic analyses for studying susceptibility to arterial and venous thrombotic disorders. Ital. Heart J. 2, 568–572.PubMedGoogle Scholar
  9. 9.
    Erali, M., Schmidt, B., Lyon, E., and Wittwer, C. (2003) Evaluation of electronic microarrays for genotyping factor V, factor II, and MTHFR. Clin. Chem. 49, 732–739.PubMedCrossRefGoogle Scholar
  10. 10.
    Thistlethwaite, W. A., Moses, L. M., Hoffbuhr, K. C., Devaney, J. M., and Hoffman, E. P. (2003) Rapid genotyping of common MeCP2 mutations with an electronic DNA microchip using serial differential hybridization. J. Mol. Diagn. 5, 121–126.PubMedCrossRefGoogle Scholar
  11. 11.
    Schrijver, I., Lay, M. J., and Zehnder, J. L. (2003) Diagnostic single nucleotide polymorphism analysis of factor V Leiden and prothrombin 20210G > A. A comparison of the Nanogen Electronic Microarray with restriction enzyme digestion and the Roche LightCycler. Am. J. Clin. Pathol. 119, 490–496.Google Scholar
  12. 12.
    Stenirri, S., Foglieni B., Manitto, M.P., et al. (2002) Single nucleotide polymorphism and mutation identification by microelectronic chip technology. Minerva Biotec. 14, 241–246.Google Scholar
  13. 13.
    Behrensdorf, H. A., Pignot, M., Windhab, N., and Kappel, A. (2002) Rapid parallel mutation scanning of gene fragments using a microelectronic protein-DNA chip format. Nucleic Acids Res. 30, e64.PubMedCrossRefGoogle Scholar
  14. 14.
    Radtkey, R., Feng, L., Muralhidar, M., et al. (2000) Rapid, high fidelity analysis of simple sequence repeats on an electronically active DNA microchip. Nucleic Acids Res. 28, E17.PubMedCrossRefGoogle Scholar
  15. 15.
    Westin, L., Xu, X., Miller, C., Wang, L., Edman, C. F., and Nerenberg, M. (2000) Anchored multiplex amplification on a microelectronic chip array. Nat. Biotechnol. 18, 199–204.PubMedCrossRefGoogle Scholar
  16. 16.
    Westin, L., Miller, C., Vollmer, D., et al. (2001) Antimicrobial resistance and bacterial identification utilizing a microelectronic chip array. J. Clin. Microbiol. 39, 1097–1104.PubMedCrossRefGoogle Scholar
  17. 17.
    Edman, C. F., Mehta, P., Press, R., Spargo, C. A., Walker, G. T., and Nerenberg, M. (2000) Pathogen analysis and genetic predisposition testing using microelectronic arrays and isothermal amplification. J. Invest. Med. 48, 93–101.Google Scholar
  18. 18.
    Huang, Y., Joo, S., Duhon, M., Heller, M., Wallace, B., and Xu, X. (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal. Chem. 74, 3362–3371.PubMedCrossRefGoogle Scholar
  19. 19.
    Weidenhammer, E. M., Kahl, B. F., Wang, L., et al. (2002) Multiplexed, targeted gene expression profiling and genetic analysis on electronic microarrays. Clin. Chem. 48, 1873–1882.PubMedGoogle Scholar
  20. 20.
    Cheng, J., Sheldon, E. L., Wu, L., et al. (1998) Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips. Nat. Biotechnol. 16, 541–546.PubMedCrossRefGoogle Scholar
  21. 21.
    Ewalt, K. L., Haigis, R. W., Rooney, R., Ackley, D., and Krihak, M. (2001) Detection of biological toxins on an active electronic microchip. Anal. Biochem. 289, 162–172.PubMedCrossRefGoogle Scholar
  22. 22.
    Yang, J. M., Bell, J., Huang, Y., et al. (2002) An integrated, stacked microlaboratory for biological agent detection with DNA and immunoassays. Biosens. Bioelectron. 17, 605–618.PubMedCrossRefGoogle Scholar
  23. 23.
    Cooper, K. L. and Goering, R. V. (2003) Development of a universal probe for electronic microarray and its application in characterization of the Staphylococcus aureus polC gene. J. Mol. Diagn. 5, 28–33.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Maurizio Ferrari
    • 1
    • 2
  • Laura Cremonesi
    • 1
  • Pierangelo Bonini
    • 3
  • Barbara Foglieni
    • 1
  • Stefania Stenirri
    • 1
  1. 1.Unit of Genomics for Diagnosis of Human PathologiesIstituto di Ricovero e Cura a Carattere Scientifico Ospedale San RaffaeleMilanItaly
  2. 2.Diagnostica e Ricerca San Raffaele S.p.AMilanItaly
  3. 3.Diagnostica e Ricerca San Raffaele S.p.A.Università Vita-Salute S. RaffaeleMilanItaly

Personalised recommendations