Skip to main content

Solid-State Protein Formulation

Methodologies, Stability, and Excipient Effects

  • Protocol
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 308))

Abstract

An important message was delivered in Chapter 20 by Sellers a nd Maa—the protein is generally more stable in the solid state than in the liquid state. Obviously, this belief is related to protein mobility. Protein movement is restricted in the dry state, substantially prohibiting the surrounding influence on the protein. Then, the notion evolves that escalating the glass transition temperature (T g) of the dry formulation will suppress protein mobility, thereby improving protein stability (1). Yet, enhancing the T g alone is not sufficient for protein stabilization without a more necessary strategy—the use of appropriate protein stabilizers, such as amorphous sugars. Again, the prevailing mechanisms of these stabilizers have already been depicted in the previous chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dudu, S. P., Zhang, G., and Dal Monte, P. R. (1997) The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody. Pharm. Res. 14, 596–600.

    Article  Google Scholar 

  2. Pikal-Cleland, K. A., Cleland, J. L., Anchordoquy, T. J., and Carpenter, J. F. (2003) Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems. J. Pharm. Sci. 91, 1969–1979.

    Article  Google Scholar 

  3. Webb, S. D., Golledge, S. L., Cleland, J. L., Carpenter, J. F., and Randolph, T. W. (2002) Surface adsorption of recombinant human interferon-gamma in lyophilized and spraylyophilized formulations. J. Pharm. Sci. 91, 1474–1487.

    Article  PubMed  CAS  Google Scholar 

  4. Webb, S. D., Cleland, J. L., Carpenter, J. F., and Randolph, T. W. (2003) Effects of annealing lyophilized and spray-lyophilized formulations of recombinant human interferon-gamma. J. Pharm. Sci. 92, 715–729.

    Article  PubMed  CAS  Google Scholar 

  5. Tracy, M. A. (1998) Development and scale-up of a microsphere protein delivery system. Biotechnol. Prog. 14, 108–115.

    Article  PubMed  CAS  Google Scholar 

  6. Maa, Y.-F., Nguyen, P.-A., Sweeney, T. D., Shire, S. J., and Hsu, C. C. (1999) Protein inhalation powder: Spray drying vs. spray freeze drying. Pharm. Res. 16, 249–254.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, D., Maa, Y.-F., and Haynes, J. (2002) Needle-free epidermal powder immunizations. Expert Vaccine Rev. 1, 265–276.

    Article  CAS  Google Scholar 

  8. Broadhead, J., Edmond Rouan, S. K., Hau, I., and Rhodes, C. T. (1994) The effect of process and formulation variables on the properties of spray-dried—galactosidase. Pharm. Pharmacol. 64, 458–467.

    Google Scholar 

  9. Labrude, P., Rasolomanana, M., Vigneron, C., Thirion, C., and Chaillot, B. (1989) Protective effect of sucrose on spray drying of oxyhemoglobin. J. Pharm. Sci. 78, 223–229.

    Article  PubMed  CAS  Google Scholar 

  10. Masters, K. Spray-drying Handbook, 4th ed. Longman (UK) and J. Wiley & Sons (US), 1985.

    Google Scholar 

  11. Broadhead, J., Edmond Rouan, S. K., and Rhodes, C. T. (1992) The spray-drying of pharmaceuticals. Drug Dev. Ind. Pharm. 18, 1169–1206.

    Article  CAS  Google Scholar 

  12. Labrude, P., Rasolomanana, M., Vigneron, C., Thirion, C., and Chaillot, B. (1989) Protective effect of sucrose on spray drying of oxyhemoglobin. J. Pharm. Sci. 78, 223–229.

    Article  PubMed  CAS  Google Scholar 

  13. Tzannis, S. T., Meyer, J. D., and Prestrelski, J. D. Secondary structure consideration during protein spray drying. Presented at 213th ACS National Meeting, BIOT-297, April 13–17, San Francisco, CA, 1997.

    Google Scholar 

  14. Costantino, R. H., Nguyen, T. H., and Hsu, C. C. (1996) Fourier transform infrared spectroscopy demonstrates that lyophilization alters the secondary structure of recombinant human growth hormone. Pharm. Sci. 2, 229–232.

    CAS  Google Scholar 

  15. Prestrelski, S. J., Pikal, K. A., and Arakawa, T. (1995) Optimization of lyophilization conditions for recombinant human interlukin-2 by dried-state conformational analysis using fourier transform infrared spectroscopy. Pharm. Res. 12, 1250–1259.

    Article  PubMed  CAS  Google Scholar 

  16. Carpenter, J. F. and Crowe, J. H. (1989) An infrared spectroscopic study of interactions of carbohydrates with dried proteins. Biochemistry 28, 3916–3922.

    Article  PubMed  CAS  Google Scholar 

  17. Arakawa, T. and Timsheff, S. N. (1982) Stabilization of protein structure by sugars. Biochemistry 21, 6536–6544.

    Article  PubMed  CAS  Google Scholar 

  18. Sarciaux, J.-M. E. and Hageman, M. (1997) Effect of bovine somatotropin (rbSt) concentration at different moisture levels on the physical stability of sucrose in freeze-dried rbSt/sucrose mixture. J. Pharm. Sci. 86, 365–371.

    Article  PubMed  CAS  Google Scholar 

  19. Maa, Y.-F. and Hsu, C. C. (1996) Effect of high shear on proteins Biotech. Bioeng. 51, 458–465.

    Article  CAS  Google Scholar 

  20. Maa, Y.-F. and Hsu, C. C. (1997) Protein denaturation by combined effect of shear and air-liquid interface. Biotech. Bioeng. 54, 503–512.

    Article  CAS  Google Scholar 

  21. Adler, M. and Lee, G. (1999) Stability and surface activity of lactate dehydrogenase in spray-dried trehalose. J. Pharm. Sci. 88, 199–208.

    Article  PubMed  CAS  Google Scholar 

  22. Faldt, P. and Berganstahl, B. (1994) The surface composition of spray-dried protein-lactose powders. Colloids and Surfaces 90, 183–190.

    Article  Google Scholar 

  23. MacRichie, F. (1978) Proteins at interfaces. Adv. Protein Chem. 32, 283–311.

    Article  Google Scholar 

  24. Thurow, H. and Geisen, K. (1984) Stabilization of dissolved proteins against denaturation at hydrophobic interfaces. Diabetologia 27, 212–218.

    PubMed  CAS  Google Scholar 

  25. Maa, Y.-F., Nguyen, P.-A., and Hsu, C. C. (1998) Spray drying of air-sensitive recombinant human growth hormone. J. Pharm. Sci. 87, 152–159.

    Article  PubMed  CAS  Google Scholar 

  26. Masters, K. (1991) Spray drying handbook, 5th ed. John Wiley and Sons, New York, 1991.

    Google Scholar 

  27. Hageman, M. J. (1988) The role of moisture on protein stability. Drug. Dev. Ind. Pharm. 14, 2047–2070.

    Article  CAS  Google Scholar 

  28. Bell, L. N., Hageman, M. J., and Muraoka, L. M. (1995). Thermally induced denaturation of lyophilized bovine somatotropin and lysozyme as impacted by moisture and excipients. J. Pharm. Sci. 84, 707–712.

    Article  PubMed  CAS  Google Scholar 

  29. Sellers, S. P., Clark, G. S., Sievers, R. E., and Carpenter, J. F. (2001) Dry Powders of Stable Protein Formulations from Aqueous Solutions Prepared Using Supercritical CO2-Assisted Aerosolization. J. Pharm. Sci. 90, 785–797.

    Article  PubMed  CAS  Google Scholar 

  30. Villa, J. A, Sievers, R. E., and Huang, E. T. S. Bubble drying to form fine particles from solutes in aqueous solutions. Proceedings of the 7th Meeting on Supercritical fluids: Particle design—Materials and natural products processing (Perrut, M. and Reverchon, E., eds.), Antibes/Juan-Les-Pins, France, December 6–8, 2000, pp. 83–88.

    Google Scholar 

  31. Cape, S. P., Villa, J. A., Huang, E. T. S., Yang, T. H., Carpenter, J. F., and Sievers, R. E. Preparation of active protein fine powders using supercritical or near-critical carbon dioxide—Protein Formulation, micronization and delivery. Manuscript in preparation.

    Google Scholar 

  32. Sievers, R. E., Huang, E. T. S., Villa, J. A., and Walsh, T. Process for rapidly forming and drying fine particles. Proceedings of the 8th Meeting on Supercritical fluids: Chemical reactivity and material processing in supercritical fluids (Besnard, and cansell, F., eds.), Bordeaus, France, April 14–17, 2002, pp. 73–78.

    Google Scholar 

  33. Gombotz, W. R., Healy, M. S., and Brown, L. R. (1991) Very low temperature casting of controlled release microspheres. U.S. Patent no. 5,019,400.

    Google Scholar 

  34. Hu, J., Rodgers, T. L., Brown, J. N., Young, T., Johnson, K. P., and Williams III, R. O. (2002) Improvement of dissolution rates of poorly water soluble APIs using novel spray freeze into liquid technology. Pharm. Res. 19, 1278–1284.

    Article  PubMed  CAS  Google Scholar 

  35. Rodgers, T. L., Nelson, A., Hu, J., Brown, J. N., Sarkari, M., Young, T., et al. (2002) A novel particle engineering to enhance dissolution rates of poorly water soluble drugs: spray freeze into liquid. Eur. J. Pharm. Biopharm. 54, 271–280.

    Article  Google Scholar 

  36. Singh-Zocchi, M., Hanne, J., and Zocchi. G. (1999) Plastic deformation of protein monolayers. Biophys. J. 83, 2211–2218.

    Article  Google Scholar 

  37. Maa, Y.-F., Nguyen, P.-A., and Hsu, C. C. (1998) Spray drying of air-sensitive recombinant human growth hormone. J. Pharm. Sci. 87, 152–159.

    Article  PubMed  CAS  Google Scholar 

  38. Sluzky, V., Tamada, J. A., Klibanov, A. M., and Langer, R. (1991) Kinetics of insulin aggregation upon agitation in the presence of hydrophobic surfaces. Proc. Natl. Acad. Sci. USA 88, 9377–9381.

    Article  PubMed  CAS  Google Scholar 

  39. Tsai, C. J., Maizel, J. V., and Nussinov, Jr., R. (2002) The hydrophobic effect: a new insight from cold denaturation and a two-state water structure. Crit. Rev. Biochem. Mol. Biol. 37, 55–69.

    Article  PubMed  CAS  Google Scholar 

  40. Lam, X. M., Costantino, H. R., Overcashier, D. E., Nguyen, T. H., and Hsu, C. C. (1996) Replacing succinate with glycolate buffer improves the stability of lyophilized interferon-γ. Int. J. Pharm. 142, 85–95.

    Article  CAS  Google Scholar 

  41. Pikal-Cleland, K. A. and Carpenter, J. F. (2001) Lyophilization-induced protein denaturation in phosphate buffer systems: monomeric and tetrameric beta-galactosidase. J. Pharm. Sci. 90, 1255–1268.

    Article  PubMed  CAS  Google Scholar 

  42. Hsu, C. C., Hguyen, H. M., Yeung, D. A., Brooks, D. A., Koe, G. S., Bewley, T. A., and Pearlman, R. (1995) Surface denaturation at solid-void interface—a possible pathway by which opalescent particulates form during the storage of lyophilized tissue-type plasminogen activator at high temperatures. Pharm. Res. 12, 69–77.

    Article  PubMed  CAS  Google Scholar 

  43. Costantino, H. R., Firouzabadian, L., Hogeland, K., Wu, C., Beganski, C., Carrasquilla, K. G., et al. (2000) Protein spray freeze drying. Effect of atomization conditions on particle size and stability. Pharm. Res. 17, 1374–1383.

    Article  PubMed  CAS  Google Scholar 

  44. Perry, R. H. and Green, D. (1984) Chemical Engineering Handbook, 6th ed. McGraw-Hill, New York, 1984, pp. 77–89.

    Google Scholar 

  45. Bradley, D. (1965) The Hydrocyclone. Pergamon Press Ltd., Oxford, UK, 1965, pp. 88–98.

    Google Scholar 

  46. Bloor, M. I. G. and Ingham, D. B. (1973) On the efficiency of the industrial cyclone. Trans. Instn. Chem. Engrs. 51, 173–176.

    Google Scholar 

  47. Maa, Y.-F., Nguyen, P.-A., Sit, K., and Hsu, C. C. (1998) Spray-drying performance of a bench-top spray dryer for protein aerosol powder preparation. Biotech. Bioeng. 60, 301–309.

    Article  CAS  Google Scholar 

  48. Mumenthaler, M., Hsu, C. C., and Pearlman, R. (1994) Feasibility study on spray-drying protein pharmaceuticals: Recombinant human growth hormone and tissue-type plasminogen activator. Pharm. Res. 11, 12–20.

    Article  PubMed  CAS  Google Scholar 

  49. Costantino, H. R., Andya, J. D., Nguyen, P.-A., Dasovich, N., Sweeney, T. D., Shire, S. J., et al. (1998) The effect of mannitol crystallization on the stability and aerosol performance of a spray-dried pharmaceutical protein, recombinant humanized anti-IgE monoclonal antibody. J. Pharm. Sci. 87, 1406–1411.

    Article  PubMed  CAS  Google Scholar 

  50. Maa, Y.-F., Costantino, H. R., Nguyen, P.-A., and Hsu, C. C. (1997) The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm. Dev. Technol. 2, 213–223.

    Article  PubMed  CAS  Google Scholar 

  51. Hageman, M. J. Stability of protein pharmaceuticals. Part A, in Chemical and Physical Pathways of Protein Degradation (Ahern, T. J. and Manning, M. C., eds.), Plenum Press, New York, 1994, pp. 273–309.

    Google Scholar 

  52. Maa, Y.-F., Nguyen, P.-A., Andya, J. D., Dasovich, N., Sweeney, T. D., Shire, S. J., and Hsu, C. C. (1998) Effect of spray drying and subsequent processing conditions on residual moisture content and physical/biochemical stability of protein inhalation powders. Pharm. Res. 15, 768–775.

    Article  PubMed  CAS  Google Scholar 

  53. Tzannis, S. T., Meyer, J. D., and Prestrelski, J. D. Secondary structure consideration during protein spray drying. Presented at 213th ACS National Meeting, BIOT-297, San Francisco, CA, April 13–17, 1997.

    Google Scholar 

  54. Johnson, O. L., Jaworowicz, W., Cleland, J. L., Bailey, L., Charnis, M., Duenas, E., et al. (1997) The stabilization of human growth hormone into biodegradable microspheres. Pharm. Res. 14, 730–735.

    Article  PubMed  CAS  Google Scholar 

  55. Cleland, J. L., Duenas, E. T., Park, A., Daugherty, A., Kahn, J., Kowalski, J., and Cuthbertson, A. (2001) Development of poly(D,L-lactide-co-glycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J. Control. Release 72, 13–24.

    Article  PubMed  CAS  Google Scholar 

  56. Lam, X. M., Duenas, E. T., and Cleland, J. L. (2001) Encapsulation and stabilization of nerve growth factor into poly(lactic-co-glycolic) acid microspheres. J. Pharm. Sci. 90, 1356–1365.

    Article  PubMed  CAS  Google Scholar 

  57. Lam, X. A., Duenas, E. T., Daugherty, A. L., Levin, N., and Cleland, J. L. (2000) Sustained release of recombinant human insulin-like growth factor-I for treatment of diabetes. J. Control. Release 67, 281–292.

    Article  PubMed  CAS  Google Scholar 

  58. Mordenti, J., Thomsen, K., Licko, V., Berleau, L., Kahn, J. W., Cuthbertson, R. A., et al. (1999) Intraocular pharmacokinetics and safety of a humanized monoclonal antibody in rats after intravitreal administration of a solution or a PLGA microsphere formulation. Toxicol. Sci. 52, 101–106.

    Article  PubMed  CAS  Google Scholar 

  59. Sonner, C., Maa, Y.-F., and Lee, G. (2002) Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability. J. Pharm. Sci. 91, 2122–2139.

    Article  PubMed  CAS  Google Scholar 

  60. Sonner, C. Protein loaded powders produced by spray freeze drying. Ph. D. Thesis. Department of Pharmaceutics, University of Erlangen, Erlangen, Germany, 2002.

    Google Scholar 

  61. Rochelle, C. and Lee, G. Spray-freeze-drying of proteins: Inactivation of catalase on atomization, freezing in liquid nitrogen, and freeze-drying steps. Presented at the CRS German Chapter Meeting, Munich, Germany, March 2003.

    Google Scholar 

  62. Yu, Z., Rogers, T. L., Hu, J., Johnson, K. P., and Williams III, R. O. (2002) Preparation and characterization of microparticles containing peptide produced by a novel process: Spray freezing into liquid. Eur. J. Pharm. Biopharm. 54, 221–228.

    Article  PubMed  CAS  Google Scholar 

  63. Maa, Y.-F., Lu, Z., Payne, L. G., and Chen, D. (2003) Stabilization of alum-adjuvanted vaccine dry powder formulations: Mechanism and application. J. Pharm. Sci. 92, 319–332.

    Article  PubMed  CAS  Google Scholar 

  64. Maa, Y.-F., Shu, C., Ameri, M., Zuleger, C., Che, J., Osorio, J. E., et al. (2003) Optimization of alum-adjuvanted vaccine powder formulation for epidermal powder immunization. Pharm. Res. 20, 969–977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Maa, YF., Sellers, S.P. (2005). Solid-State Protein Formulation. In: Smales, C.M., James, D.C. (eds) Therapeutic Proteins. Methods in Molecular Biology™, vol 308. Humana Press. https://doi.org/10.1385/1-59259-922-2:265

Download citation

  • DOI: https://doi.org/10.1385/1-59259-922-2:265

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-390-9

  • Online ISBN: 978-1-59259-922-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics