Skip to main content

Isolation, Solubilization, Refolding, and Chromatographic Purification of Human Growth Hormone from Inclusion Bodies of Escherichia coli Cells

A Case Study

  • Protocol
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 308))

  • 2508 Accesses

Abstract

Inclusion bodies produced in Escherichia coli are composed of densely packed denatured protein molecules in the form of particles (1,2). In addition to the recombinant protein of interest, inclusion bodies contain small amounts of host protein, ribosomal components, and DNA/RNA fragments (3). It is advisable to purify the inclusion bodies from the cells to a high-degree purity before carrying out solubilization and purification. This will reduce the number of purification steps after solubilization and refolding, minimize the interference of other contaminating proteins during refolding, and result in a therapeutic protein free from other cellular contaminants, such as lipids, carbohydrate, and endotoxin (4). Isolation of inclusion bodies from E. coli occurs by cell lysis with high-pressure disruption using a French press or sonication step followed by centrifugation (5). Further purification can be achieved by washing with detergents and a low concentration of salt and/or urea (5,6). The presence of contaminants, along with the protein of interest, is mainly because of incomplete purification of the inclusion bodies following cell lysis. With proper centrifugation and washing processes, more than 95% pure inclusion bodies of recombinant proteins can be isolated from E. coli cells (7). As the inclusion bodies have a high density (approx 1.3 mg mL−1), these are easily separated by high-speed centrifugation after cell disruption (8). Centrifugal isolation, particularly sucrose gradient centrifugation, has been found to be the best method for isolating very pure inclusion bodies from E. coli cell lysate (9). Expression of recombinant human growth hormone (r-hGH) in E. coli will illustrate the methods used for isolation and purification of intact inclusion bodies. The purified inclusion bodies will then be used for solubilization and refolding to obtain bioactive protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J., and King, J. (1991) Global suppression of protein folding defects and inclusion body formation. Science 253, 54–58.

    Article  PubMed  CAS  Google Scholar 

  2. Carrio, M. M., Cubarsi, R., and Villaverde, A. (2000) Fine architecture of bacterial inclusion bodies. FEBS Lett. 471, 7–11.

    Article  PubMed  CAS  Google Scholar 

  3. Valax, P., and Georgiou, G. (1993) Molecular characterization of beta-lactamase inclusion bodies produced in Escherichia coli. 1. Composition. Biotechnol. Prog. 9, 539–547.

    Article  PubMed  CAS  Google Scholar 

  4. Clark, E. D. B. (1998) Refolding of recombinant proteins. Curr. Opin. Biotechnol. 9, 157–163.

    Article  PubMed  Google Scholar 

  5. Georgiou, G. and Valax, P. (1999) Isolating inclusion bodies from bacteria. Methods Enzymol. 309, 48–58.

    Article  PubMed  CAS  Google Scholar 

  6. Lilie, H., Schwarz, E., and Rudolph, R. (1998) Advances in refolding of proteins produced in E. coli. Curr. Opin. Biotechnol. 9, 497–501.

    Article  PubMed  CAS  Google Scholar 

  7. Khan, R. H., AppaRao, K. B. C., Eshwari, A. N. S., Totey, S. M., and Panda, A. K. (1998) Solubilization of recombinant ovine growth hormone with retention of native-like secondary structure and its refolding from the inclusion bodies of Escherichia coli. Biotechnol. Prog. 14, 722–728.

    Article  PubMed  CAS  Google Scholar 

  8. Taylor, G., Hoare, M., Gray, D. R., and Marston, F. A. O. (1986) Size and density of protein inclusion bodies. Biotechnology 4, 553–557.

    Article  CAS  Google Scholar 

  9. Bowden, G. A., Paredes, A. M., and Georgiou, G. (1991) Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology 9, 725–730.

    Article  PubMed  CAS  Google Scholar 

  10. Rudolph, R. and Lilie, H. (1996) In vitro folding of inclusion body proteins. FASEB J. 10, 49–56.

    PubMed  CAS  Google Scholar 

  11. Misawa, S. and Kumagai, I. (1999) Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies. Biopolymers 51, 297–307.

    Article  PubMed  CAS  Google Scholar 

  12. Clark, E. D. (2001) Protein refolding for industrial processes. Curr. Opin. Biotechnol. 12, 202–207.

    Article  PubMed  CAS  Google Scholar 

  13. Creighton, T. E., Darby, N. J., and Kemmink, J. (1996) The roles of partly folded intermediates in protein folding. FASEB J. 10, 110–118.

    PubMed  CAS  Google Scholar 

  14. Cardamone, M., Puri, N. K., and Brandon, M. R. (1995) Comparing the refolding and reoxidation of recombinant porcine growth hormone from a urea denatured state and from Escherichia coli inclusion bodies. Biochemistry 34, 5773–5794.

    Article  PubMed  CAS  Google Scholar 

  15. St John, R. J., Carpenter, J. F., Balny, C., and Randolph, T. W. (2001) High pressure refolding of recombinant human growth hormone from insoluble aggregates. Structural transformations, kinetic barriers, and energetics. J. Biol. Chem. 276, 46856–46863.

    Article  PubMed  CAS  Google Scholar 

  16. Patra, A. K., Mukhopadhyay, R., Mukhija, R., Krishnan, A., Garg, L. C., and Panda, A. K. (2000) Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein Expr. Purif. 18, 182–192.

    Article  PubMed  CAS  Google Scholar 

  17. Patra, A. K., Gahlay, G. K., Reddy, B. V., Gupta, S. K., and Panda, A. K. (2000) Refolding, structural transition and spermatozoa-binding of recombinant bonnet monkey (Macaca radiata) zona pellucida glycoprotein-C expressed in Escherichia coli. Eur. J. Biochem. 267, 7075–7081.

    Article  PubMed  CAS  Google Scholar 

  18. Evangelista Dyr, J. and Suttnar, J. (1997) Separations used for the purification of recombinant proteins. J. Chromatogr. B, Biomed. Sci. Appl. 699, 383–401.

    Article  CAS  Google Scholar 

  19. Amersham Pharmacia Biotech. Ion Exchange Chromatography Principles and Methods. Amersham Pharmacia Biotech, Uppsala, Sweden, 1999.

    Google Scholar 

  20. Ribela, M. T., Gout, P. W., and Bartolini, P. (2003) Synthesis and chromatographic purification of recombinant human pituitary hormones. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 790, 285–316.

    Article  PubMed  CAS  Google Scholar 

  21. Becker, G. W. and Hsiung, H. M. (1986) Expression, secretion and folding of human growth hormone in Escherichia coli. Purification and characterization. FEBS Lett. 204, 145–150.

    Article  PubMed  CAS  Google Scholar 

  22. Igout, A., Van Beeumen, J., Frankenne, F., Scippo, M. L., Devreese, B., and Hennen, G. (1993) Purification and biochemical characterization of recombinant human placental growth hormone produced in Escherichia coli. Biochem. J. 295, 719–724.

    PubMed  CAS  Google Scholar 

  23. Speed, M. A., Wang, D. I., and King, J. (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat. Biotechnol. 14, 1283–1287.

    Article  PubMed  CAS  Google Scholar 

  24. De Bernardez Clark, E., Schwarz, E., and Rudolph, R. (1999) Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol. 309, 217–236.

    Article  PubMed  Google Scholar 

  25. Tsumoto, K., Ejima, D., Kumagai, I., and Arakawa, T. (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 28, 1–8.

    Article  PubMed  CAS  Google Scholar 

  26. Lindwall, G., Chau, M., Gardner, S. R., and Kohlstaedt, L. A. (2000) A sparse matrix approach to the solubilization of overexpressed proteins. Protein Eng. 13, 67–71.

    Article  PubMed  CAS  Google Scholar 

  27. Altamirano, M. M., Golbik, R., Zahn, R., Buckle, A. M., and Fersht, A. R. (1997) Refolding chromatography with immobilized mini-chaperones. Proc. Natl. Acad. Sci. USA 94, 3576–3578.

    Article  PubMed  CAS  Google Scholar 

  28. Vinogradov, A. A., Kudryashova, E. V., Levashov, A. V., and van Dongen, W. M. (2003) Solubilization and refolding of inclusion body proteins in reverse micelles. Anal. Biochem. 320, 234–238.

    Article  PubMed  CAS  Google Scholar 

  29. Batas, B., Schiraldi, C., and Chaudhuri, J. B. (1999) Inclusion body purification and protein refolding using microfiltration and size exclusion chromatography. J. Biotechnol. 68, 149–158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Singh, S.M., Eshwari, A.N.S., Garg, L.C., Panda, A.K. (2005). Isolation, Solubilization, Refolding, and Chromatographic Purification of Human Growth Hormone from Inclusion Bodies of Escherichia coli Cells. In: Smales, C.M., James, D.C. (eds) Therapeutic Proteins. Methods in Molecular Biology™, vol 308. Humana Press. https://doi.org/10.1385/1-59259-922-2:163

Download citation

  • DOI: https://doi.org/10.1385/1-59259-922-2:163

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-390-9

  • Online ISBN: 978-1-59259-922-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics