Skip to main content

High-Throughput Recovery of Therapeutic Proteins from the Inclusion Bodies of Escherichia coli

An Overview

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 308))

Abstract

Escherichia coli is widely used for the expression of recombinant proteins that do not require glycosylation for their bioactivity (1,2). Many commercially available recombinant hormones and the majority of interleukins and interferons are all expressed and produced in E. coli systems (3). The advantages of using E. coli as an expression system include the enormous volume of data on its cell biology, its fermentation process development, and its ability to produce relatively large and inexpensive quantities of recombinant protein (4). However, the high-level expression of recombinant proteins in E. coli often results in the accumulation of the product as insoluble aggregates in vivo as inclusion bodies (5). Inclusion body proteins are devoid of biological activity and require elaborate solubilization and refolding procedures to recover functional activity (6,7). The renaturation of inclusion body proteins into a bioactive form is cumbersome, results in low recovery of the final product, and also accounts for the major cost in overall production of recombinant proteins using E. coli (7,8). However, whereas high-yielding processes are developed for the refolding of the aggregated recombinant proteins, high-level expression of proteins as inclusion bodies provides a straightforward strategy for producing therapeutic proteins. The initial high level of expression compensates for loss during recovery of the protein of interest from inclusion bodies. Despite many successful refolding procedures for inclusion body proteins (even at industrial scale), the renaturation process for each protein is quite different. Most often, this process is carried out in an empirical way and causes poor recovery of the bioactive therapeutic protein.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Baneyx, F. (1999) Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10, 411–421.

    Article  PubMed  CAS  Google Scholar 

  2. Swartz, J. R. (2001) Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 12, 195–201.

    Article  PubMed  CAS  Google Scholar 

  3. Walsh, G. (2003) Biopharmaceutical benchmarks—2003. Nat. Biotechnol. 21, 865–870.

    Article  PubMed  CAS  Google Scholar 

  4. Makrides, S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60, 512–538.

    PubMed  CAS  Google Scholar 

  5. Kane, J. F. and Hartley, D. L. (1988) Formation of recombinant protein inclusion bodies in Escherichia coli. Trends Biotechnol. 6, 95–101.

    Article  CAS  Google Scholar 

  6. Rudolph, R. and Lilie, H. (1996) In vitro folding of inclusion body proteins. FASEB J. 10, 49–56.

    PubMed  CAS  Google Scholar 

  7. Clark, E. D. (2001) Protein refolding for industrial processes. Curr. Opin. Biotechnol. 12, 202–207.

    Article  PubMed  CAS  Google Scholar 

  8. Datar, R. V., Cartwright, T., and Rosen, C. G. (1993) Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Biotechnology 11, 349–357.

    Article  PubMed  CAS  Google Scholar 

  9. Fischer, B., Sumner, I., and Goodenough, P. (1993) Isolation, renaturation and formation of disulfide bonds of eukaryotic proteins expressed in E. coli as inclusion bodies. Biotechnol. Bioeng. 41, 3–13.

    Article  PubMed  CAS  Google Scholar 

  10. Panda, A. K. (2003) Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv. Biochem. Eng. Biotechnol. 85, 43–93.

    PubMed  CAS  Google Scholar 

  11. Rudolph, R., Böhm, G., Lilie, H., and Jaenicke, R. Folding proteins, in Protein Function, a Practical Approach (Creighton, T. E., ed.), IRL-Press, Oxford University Press, Oxford, 1997, pp. 57–99.

    Google Scholar 

  12. De Bernardez Clark, E., Schwarz, E., and Rudolph, R. (1999) Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol. 309, 217–236.

    Article  PubMed  Google Scholar 

  13. Dill, K. A. and Shortle, D. (1991) Denatured states of proteins. Annu. Rev. Biochem. 60, 795–825.

    Article  PubMed  CAS  Google Scholar 

  14. Petrides, D., Sapidou, E., and Calandranis, J. (1995) Computer-aided process analysis and economic evaluation for biosynthetic human insulin production-a case study. Biotechnol. Bioeng. 48, 529–541.

    Article  PubMed  CAS  Google Scholar 

  15. Stockel, J., Doring, K., Malotka, J., Jahnig, F., and Dornmair, K. (1997) Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimeric class II major histocompatibility complex (MHC) molecules. Eur. J. Biochem. 248, 684–691.

    Article  PubMed  CAS  Google Scholar 

  16. Cardamone, M., Puri, N. K., and Brandon, M. R. (1995) Comparing the refolding and reoxidation of recombinant porcine growth hormone from a urea denatured state and from Escherichia coli inclusion bodies. Biochemistry 34, 5773–5794.

    Article  PubMed  CAS  Google Scholar 

  17. Burgess, R. R. (1996) Purification of overproduced Escherichia coli RNA polymerase sigma factors by solubilizing inclusion bodies and refolding from Sarkosyl. Methods Enzymol. 273, 145–149.

    Article  PubMed  CAS  Google Scholar 

  18. Yasuda, M., Murakami, Y., Sowa, A., Ogino, H., and Ishikawa, H. (1998) Effect of additives on refolding of a denatured protein. Biotechnol. Prog. 14, 601–606.

    Article  PubMed  CAS  Google Scholar 

  19. Mark Buswell, A., Ebtinger, M., Vertes, A. A., and Middelberg, A. P. (2002) Effect of operating variables on the yield of recombinant trypsinogen for a pulse-fed dilutionrefolding reactor. Biotechnol. Bioeng. 77, 435–444.

    Article  PubMed  CAS  Google Scholar 

  20. Tsumoto, K., Ejima, D., Kumagai, I., and Arakawa, T. (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 28, 1–8.

    Article  PubMed  CAS  Google Scholar 

  21. Lilie, H., Schwarz, E., and Rudolph, R. (1998) Advances in refolding of proteins produced in E. coli. Curr. Opin. Biotechnol. 9, 497–501.

    Article  PubMed  CAS  Google Scholar 

  22. Bowden, G. A., Paredes, A. M., and Georgiou, G. (1991) Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology 9, 725–730.

    Article  PubMed  CAS  Google Scholar 

  23. Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J., and King, J. (1991) Global suppression of protein folding defects and inclusion body formation. Science 253, 54–58.

    Article  PubMed  CAS  Google Scholar 

  24. Taylor, G., Hoare, M., Gray, D. R., and Marston, F. A. O. (1986) Size and density of protein inclusion bodies. Biotechnology 4, 553–557.

    Article  CAS  Google Scholar 

  25. Georgiou, G. and Valax, P. (1999) Isolating inclusion bodies from bacteria. Methods Enzymol. 309, 48–58.

    Article  PubMed  CAS  Google Scholar 

  26. Speed, M. A., Wang, D. I., and King, J. (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat. Biotechnol. 14, 1283–1287.

    Article  PubMed  CAS  Google Scholar 

  27. Rajan, R. S., Illing, M. E., Bence, N. F., and Kopito, R. R. (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc. Natl. Acad. Sci. USA 98, 13060–13065.

    Article  PubMed  CAS  Google Scholar 

  28. Carrio, M. M. and Villaverde, A. (2001) Protein aggregation as bacterial inclusion bodies is reversible. FEBS Lett. 489, 29–33.

    Article  PubMed  CAS  Google Scholar 

  29. Przybycien, T. M., Dunn, J. P., Valax, P., and Georgiou, G. (1994) Secondary structure characterization of β-lactamase inclusion bodies. Protein Eng. 7, 131–136.

    Article  PubMed  CAS  Google Scholar 

  30. Oberg, K., Chrunyk, B. A., Wetzel, R., and Fink, A. L. (1994) Native-like secondary structure in interleukin-1 βinclusion bodies by attenuated total reflectance FTIR. Biochemistry 33, 2628–2634.

    Article  PubMed  CAS  Google Scholar 

  31. Khan, R. H., AppaRao, K. B. C., Eshwari, A. N. S., Totey, S. M., and Panda, A. K. (1998) Solubilization of recombinant ovine growth hormone with retention of native-like secondary structure and its refolding from the inclusion bodies of Escherichia coli. Biotechnol. Prog. 14, 722–728.

    Article  PubMed  CAS  Google Scholar 

  32. Patra, A. K., Mukhopadhyay, R., Mukhija, R., Krishnan, A., Garg, L. C., and Panda, A. K. (2000) Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein Expr. Purif. 18, 182–192.

    Article  PubMed  CAS  Google Scholar 

  33. Betts, S. and King, J. (1999) There’s a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure Fold. Des. 7, R131–R139.

    Article  PubMed  CAS  Google Scholar 

  34. Kreisberg, J. F., Betts, S. D., Haase-Pettingell, C., and King, J. (2002) The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization. Protein Sci. 11, 820–830.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Panda, A.K. (2005). High-Throughput Recovery of Therapeutic Proteins from the Inclusion Bodies of Escherichia coli . In: Smales, C.M., James, D.C. (eds) Therapeutic Proteins. Methods in Molecular Biology™, vol 308. Humana Press. https://doi.org/10.1385/1-59259-922-2:155

Download citation

  • DOI: https://doi.org/10.1385/1-59259-922-2:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-390-9

  • Online ISBN: 978-1-59259-922-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics