Skip to main content

Production of Recombinant Therapeutic Proteins by Mammalian Cells in Suspension Culture

  • Protocol
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 308))

Abstract

Within the past 10 yr, 17 monoclonal antibodies (MAbs) have been approved in the United States. A survey of these approved MAbs reveals that the predominant platform is a serum-free, stirred-tank mammalian cell culture. In fact, all 17 products are grown in only four cell lines: Chinese hamster ovary (CHO) cells, mouse myeloma cells (NS0 and Sp2/0), or hybridoma cells. The trend toward platform consolidation enables the possibility to quicken process development timelines to establish a common method in the development of a large-scale production process. This chapter will outline the general format for producing a recombinant protein in stirred tank, serumfree cultures beginning from a recombinant plasmid and a mammalian host cell line. Although different cell lines are used in this chapter as examples for the various methods, these methods are applicable across most common production cell lines. The purification options following harvest of the bulk material are not discussed, nor are the details of regulatory requirements, but purification information is readily available in other chapters of this book, and regulatory guidance documents are available at the regulatory websites, such as http://www.fda.gov/cber and http://www.ich.org.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jordan, M., Schallhorn, A., and Wurm, F. M. (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24, 59–601.

    Article  Google Scholar 

  2. Batard, P., Jordan, M., and Wurm, F. (2001) Transfer of high copy number plasmid into mammalian cells by calcium phosphate transfection. Gene 270, 61–68.

    Article  PubMed  CAS  Google Scholar 

  3. Bebbington, C. R., Renner, G., Thomson, S., King, D., Abrams, D., and Yarranton, G. T. (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology 10, 169–175.

    Article  PubMed  CAS  Google Scholar 

  4. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. PNAS 84, 7413–7417.

    Article  PubMed  CAS  Google Scholar 

  5. Norton, P. A. and Pachuk, C. J. Methods for DNA introduction into Mammalian Cells, in Gene Transfer and Expression in Mammalian Cells (Makrides, S. C., ed.), Elsevier Science B. V., New York, NY, 2003, pp. 265–277.

    Chapter  Google Scholar 

  6. Ciccarone, V., Chu, Y., Schifferli, K., Pichet, J.-P., Hawley-Nelson, P., Evans, K., et al. (1999) LipofectAMINE(tm) 2000 Reagent for rapid, efficient transfection of eukaryotic cells. Focus 21, 54–55.

    Google Scholar 

  7. Freshney, I. R., ed. Culture of Animal Cells: A Manual of Basic Technique. John Wiley & Sons, Hoboken, NJ, 2002.

    Google Scholar 

  8. Barnes, D. and Sato, G. (1980) Serum-free cell culture: a unifying approach. Cell 22, 649–655.

    Article  PubMed  CAS  Google Scholar 

  9. Sinacore, M. S., Drapeau, D., and Adamson, S. R. (2000) Adaptation of mammalian cells to growth in serum-free media. Mol Biotechnol. 15, 249–257.

    Article  PubMed  CAS  Google Scholar 

  10. Ertola, R. J., Giulietti, A. M., and Castillo, F. J. (1995) Design, formulation, and optimization of media. Bioprocess Technol. 21, 89–137.

    PubMed  CAS  Google Scholar 

  11. Hu, W. S. and Piret, J. M. (1992) Mammalian cell culture processes. Curr. Opin. Biotechnol. 3, 110–114.

    Article  PubMed  CAS  Google Scholar 

  12. Jayme, D. W. and Blackman, K. E. (1985) Culture media for propagation of mammalian cells, viruses, and other biologicals. Adv. Biotechnol. Processes 5, 1–30.

    PubMed  CAS  Google Scholar 

  13. Mather, J. P. and Barnes, D., eds. Animal Cell Culture Methods, vol 57. Academic Press, London, UK, 1998.

    Google Scholar 

  14. Jayme, D. W. (1991) Nutrient optimization for high density biological production applications. Cytotechnology 5, 15–30.

    Article  PubMed  CAS  Google Scholar 

  15. http://www.xcellerex.com; http://www.bioprocessors.com; http://www.dasgip.de; http://www.fluorometrix.com.

  16. Molnar-Perl, I. (2003) Quantitation of amino acids and amines in the same matrix by highperformance liquid chromatography, either simultaneously or separately. J. Chromatogr. A. 987, 291–309.

    Article  PubMed  CAS  Google Scholar 

  17. Christie, A. and Butler, M. (1999) The adaptation of BHK cells to a non-ammoniagenic glutamate-based culture medium. Biotechnol. Bioeng. 64, 298–309.

    Article  PubMed  CAS  Google Scholar 

  18. Jayme, D. W. (1999) An animal origin perspective of common constituents of serum-free medium formulations. Dev. Biol. Stand. 99, 181–187.

    PubMed  CAS  Google Scholar 

  19. Walowitz, J. L., Fike, R. M., and Jayme, D. W. (2003) Efficient lipid delivery to hybridoma culture by use of cyclodextrin in a novel granulated dry-form medium technology. Biotechnol. Prog. 19, 64–68.

    Article  PubMed  CAS  Google Scholar 

  20. Gray, D. R. (2000) Bioreactor operations—preparation, sterilization, charging, culture initiation and harvesting, in Encyclopedia of Cell Technology (Spier, R. E., ed.), John Wiley & Sons, New York, NY, 2000, pp. 138–174.

    Google Scholar 

  21. Mostafa, S. S. and Gu, X. (2003) Strategies for improved dCO2 removal in large-scale fedbatch cultures. Biotechnol. Prog. 19, 45–51.

    Article  PubMed  CAS  Google Scholar 

  22. deZegontita, V. M., Kimura, R., and Miller, W. M. (1998) Effects of CO2 and osmolarity on hybridoma cells: Growth, metabolism, and monoclonal antibody production. Cytotechnology 28, 213–227.

    Article  Google Scholar 

  23. Gray, D. R., Chen, S., Horwath, W., Inlow, D., and Maiorella, B. L. (1996) CO2 in largescale and high-density CHO perfusion culture. Cytotechnology 22, 65–78.

    Article  CAS  Google Scholar 

  24. deZegontita, V. M., Schmelzer, A. E., and Miller, W. M. (2002) Characterization of hybridoma cell response to elevated pCO2 and osmolarity: intracellular pH, cell size, apoptosis, and medium metabolism. Biotechnol. Bioeng. 77, 369–380.

    Article  Google Scholar 

  25. Michaels, J. D., Nowalk, J. E., Mallik, A. K., Koczo, K., Wasan, D. T., and Papoutsakis, E. T. (1995) Analysis of cell-to-bubble attachment in sparged bioreactors in the presence of cell-protecting additives. Biotechnol. Bioeng. 47, 407–419.

    Article  PubMed  CAS  Google Scholar 

  26. Michaels, J. D., Nowalk, J. E., Mallik, A. K., Koczo, K., Wasan, D. T., and Papoutsakis, E. T. (1995) Interfacial properties of cell culture media with cell-protecting additives. Biotechnol. Bioeng. 47, 420–430.

    Article  PubMed  CAS  Google Scholar 

  27. Muthing, J., Kemminer, S. E., Conrad, H. S., Sagi, D., Nimtz, M., Karst, U., and Peter-Katalinic, J. (2003) Effect of buffering conditions and culture pH on producing rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24. Biotechnol. Bioeng. 83, 321–334.

    Article  PubMed  Google Scholar 

  28. Kaufmann, H., Mazur, X., Marone, R., Bailey, J. E., and Fussenegger, M. (2001) Comparative analysis of two controlled proliferation strategies regarding product quality, influence on tetracycline-regulated gene expression, and productivity. Biotechnol. Bioeng. 72, 592–602.

    Article  PubMed  CAS  Google Scholar 

  29. Chu, L. and Robinson, D. K. (2001) Industrial choices for protein production by largescale cell culture. Curr. Opin. Biotechnol. 12, 180–187.

    Article  PubMed  CAS  Google Scholar 

  30. Arden, N. and Betenbaugh, M. J. (2004) Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol. (e-publication, doi 10.1016/j.tibtech.2004.02.004).

    Google Scholar 

  31. Dempsey, J., Ruddock, S., Osborne, M., Ridley, A., Sturt, S., and Field, R. (2003) Improved fermentation processes for NSO cell line expressing human antibodies and glutamine synthetase. Biotechnol. Prog. 19, 175–178.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, L., Shen, H., and Zhang, Y. (2004) Fed-batch culture of hybridoma cells in serum-free medium using an optimized feeding strategy. J. Chem. Technol. Biotechnol. 79, 171–181.

    Article  CAS  Google Scholar 

  33. Frahm, B., Lane, P., Märkl, H., and Pörtner, R. (2003) Improvement of a mammalian cell culture process by adaptive, model-based dialysis fed-batch cultivation and suppression of apoptosis. Bioprocess Biosyst. Eng. 26, 1–10.

    Article  PubMed  CAS  Google Scholar 

  34. Portner, R., Schwabe, J. O., and Frahm, B. (2004) Evaluation of selected control strategies for fed-batch cultures of a hybridoma cell line. Biotechnol. Appl. Biochem. March 3 (e-publication, doi 10.1042/BA20030168).

    Google Scholar 

  35. Sauer, P. W., Burky, J. E., Wesson, M. C., Sternard, H. D., and Qu, L. (2000) A highyielding generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol. Bioeng. 67, 585–597.

    Article  PubMed  CAS  Google Scholar 

  36. Singh, V. (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnol. 30, 149–158.

    Article  CAS  Google Scholar 

  37. Palomares, L. A. and Ramirez, O. T. Bioreactor scale-down, in Encyclopedia of Cell Technology (Spier, R. E., ed.), John Wiley & Sons, New York, NY, 2000, pp. 174–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Chu, L., Blumentals, I., Maheshwari, G. (2005). Production of Recombinant Therapeutic Proteins by Mammalian Cells in Suspension Culture. In: Smales, C.M., James, D.C. (eds) Therapeutic Proteins. Methods in Molecular Biology™, vol 308. Humana Press. https://doi.org/10.1385/1-59259-922-2:107

Download citation

  • DOI: https://doi.org/10.1385/1-59259-922-2:107

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-390-9

  • Online ISBN: 978-1-59259-922-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics