Skip to main content

Pharmaceutical Proteins From Methylotrophic Yeasts

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 308))

Abstract

Because of their favorable properties, methylotrophic yeasts have become increasingly important as cell factories for the production of biomaterials, therapeutic proteins, and vaccines. As a eukaryote, yeast can perform most of the posttranslational modifications that are required to ensure the functionality and/or stability of recombinant human proteins, such as N- and O-linked glycosylation, phosphorylation, and formation of disulfide bonds. In contrast to other yeast systems, foreign genes can be expressed at high levels under control of strong inducible promoters derived from genes encoding proteins that are involved in methanol metabolism. Furthermore, heterologous proteins can be secreted at high levels into the culture medium, which, in combination with the fact that few endogenous proteins are secreted, significantly facilitates purification of the desired protein. Finally, as unicellular microorganisms, methylotrophic yeasts have major advantages in industrial fermentation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cereghino, J. L. and Cregg, J. M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24, 45–66.

    Article  PubMed  CAS  Google Scholar 

  2. Gellissen, G. (2000) Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54, 741–750.

    Article  PubMed  CAS  Google Scholar 

  3. Gleeson, M. A. G., White, C. E., Meininger, D. P., and Komives, E. A. (1998) Generation of protease-deficient strains and their use in heterologous protein expression, in Methods in Molecular Biology, vol. 103: Pichia Protocols (Higgins, D. R. and Gregg, J. M., eds.), Humana, Totowa, NJ, pp. 81–94.

    Chapter  Google Scholar 

  4. Choi, B. K., Bobrowicz, P., Davidson, R. C., Hamilton, S. R., Kung, D. H., Li, H., et al. (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc. Natl. Acad. Sci. USA 100, 5022–5027.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, M. W., Rhee, S. K., Kim, J. Y., Shimma, Y., Chiba, Y., Jigami, Y., and Kang H. A. (2004) Characterization of N-linked oligosaccharides assembled on secretory recombinant glucose oxidase and cell wall mannoproteins from the methylotrophic yeast Hansenula polymorpha. Glycobiology 14, 243–251.

    Article  PubMed  CAS  Google Scholar 

  6. Hamilton, S. R., Bobrowicz, P., Bobrowicz, B., Davidson, R. C., Li, H., Mitchell, T., et al. (2003) Production of complex human glycoproteins in yeast. Science 301, 1244–1246.

    Article  PubMed  CAS  Google Scholar 

  7. Gleeson, M. A. G. and Sudbery, P. E. (1988) Genetic analysis in the methylotrophic yeast Hansenula polymorpha. Yeast 4, 293–303.

    Article  CAS  Google Scholar 

  8. Gietl, C., Faber, K. N., van der Klei, I. J., and Veenhuis, M. (1994) Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha. Proc. Natl. Acad. Sci. USA 91, 3151–3155.

    Article  PubMed  CAS  Google Scholar 

  9. Cregg, J. M., Madden, K. R., Barringer, K. J., Thill, G. P., and Stillman, C. A. (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol. Cell. Biol. 9, 1316–1323.

    PubMed  CAS  Google Scholar 

  10. Gatzke, R., Weydemann, U., Janowicz, Z. A., and Hollenberg, C. P. (1995) Stable multicopy integration of vector sequences in Hansenula polymorpha. Appl. Microbiol. Biotechnol. 43, 844–849.

    Article  PubMed  CAS  Google Scholar 

  11. Becker, D. M. and Guarente L. (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol. 194, 182–187.

    Article  PubMed  CAS  Google Scholar 

  12. Faber, K. N, Haima, P., Harder, W., Veenhuis, M., and AB, G. (1994) Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr. Genet. 25, 305–310.

    Article  PubMed  CAS  Google Scholar 

  13. Wu, S. and Letchworth, G. J. (2004) High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques 36, 152–154.

    PubMed  CAS  Google Scholar 

  14. Bos, I. G., de Bruin, E. C., Karuntu, Y. A., Modderman, P. W., Eldering, E., and Hack, C. E. (2003) Recombinant human C1-inhibitor produced in Pichia pastoris has the same inhibitory capacity as plasma C1-inhibitor. Biochim. Biophys. Acta 1648, 75–83.

    PubMed  CAS  Google Scholar 

  15. Pichia Fermentation Process Guidelines, version B, Invitrogen, Carlsbad, CA.

    Google Scholar 

  16. Stratton, J., Chiruvolu, V., and Meagher, M. (1998) High cell-density fermentation, in Methods in Molecular Biology, vol. 103: Pichia Protocols (Higgins, D. R. and Gregg, J. M., eds.), Humana, Totowa, NJ, pp. 107–120.

    Chapter  Google Scholar 

  17. de Bruin, E. C., de Wolf, F. A., and Laane, N. C. (2000) Expression and secretion of human alpha1(I) procollagen fragment by Hansenula polymorpha as compared to Pichia pastoris. Enzyme Microb. Technol. 26, 640–644.

    Article  PubMed  Google Scholar 

  18. Potter, K. J., Zhang, W., Smith, L. A., and Meagher, M. M. (2000) Production and purification of the heavy chain fragment C of botulinum neurotoxin, serotype A, expressed in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 19, 393–402.

    Article  PubMed  CAS  Google Scholar 

  19. Clare, J. J., Romanos, M. A., Rayment, F. B., Rowedder, J. E., Smith, M. A., Payne, M. M., et al. (1991) Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene 105, 205–212.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

de Bruin, E.C., Duitman, E.H., de Boer, A.L., Veenhuis, M., Bos, I.G.A., Hack, C.E. (2005). Pharmaceutical Proteins From Methylotrophic Yeasts. In: Smales, C.M., James, D.C. (eds) Therapeutic Proteins. Methods in Molecular Biology™, vol 308. Humana Press. https://doi.org/10.1385/1-59259-922-2:065

Download citation

  • DOI: https://doi.org/10.1385/1-59259-922-2:065

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-390-9

  • Online ISBN: 978-1-59259-922-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics