Skip to main content

Single-Molecule Study of Protein-Protein and Protein-DNA Interaction Dynamics

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 305))

Abstract

Protein-protein and protein-DNA interactions play critical roles in biological systems, and these interactions often involve complex mechanisms and inhomogeneous dynamics. Single-molecule spectroscopy is a powerful and complimentary approach to decipher such spatially and temporally inhomogeneous protein interaction systems, providing new information that are not obtainable from static structure analyses, thermodynamics characterization, and ensemble-averaged measurements. To illustrate the single-molecule spectroscopy and imaging technology and their applications on studying protein-ligand interactions, this chapter focuses on discussing two recent single-molecule spectroscopy studies on protein-protein interaction in cell signaling process and on protein-DNA interactions in DNA damage recognition process. Key Words: Single-molecule spectroscopy and imaging; single-molecule protein conformational dynamics; protein-protein interaction dynamics in cell signaling; protein-DNA recognition dynamics in DNA damage recognition and repair.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zwanzig R. (1990) Rate processes with dynamical disorder. Acct. Chem. Res. 23, 148–152.

    Article  CAS  Google Scholar 

  2. Wang J., Wolynes P. (1995) Intermittency of single molecule reaction dynamics in fluctuating environments Phys. Rev. Lett. 74, 4317–4320.

    Article  CAS  Google Scholar 

  3. Yang S. L., Cao J. S. (2001) Two-event echos in single-molecule kinetics: A signature of conformational fluctuations. J. Phys. Chem. B 105, 6536–6549.

    Article  CAS  Google Scholar 

  4. Jung Y. J., Barkai E., Silbey R. J. (2002) Current status of single-molecule spectroscopy: Theoretical aspects. J. Chem. Phys. 117, 10,980–10,995.

    Article  CAS  Google Scholar 

  5. Xie X. S. (2002) Single-molecule approach to dispersed kinetics and dynamic disorder: Probing conformational fluctuation and enzymatic dynamics. J. Chem. Phys. 117, 11,024–11,032.

    Article  Google Scholar 

  6. Harms G. S., Orr G., Montal M., Thrall B. D., Colson S. D., and Lu H. P. (2003) Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy. Biophys. J. 85, 1826–1838.

    Article  CAS  Google Scholar 

  7. Moerner W. E. and Orrit M. (1999) Illuminating molecules in condensed matter. Science 283 11,670–11,676.

    Article  Google Scholar 

  8. Lu H. P., Xun L., and Xie X. S. (1998) Single-molecule enzymatic dynamics Science 282, 1877–1882.

    Article  CAS  Google Scholar 

  9. Xie X. S. and Lu H. P. (1999) Single-molecule enzymology, J. Biol. Chem. 274, 15,967–15,970.

    Article  CAS  Google Scholar 

  10. Lu H. P., Iakoucheva L. M., and Ackerman E. J. (2001) Single-molecule conformational dynamics of fluctuating noncovalent protein-DNA interactions in DNA damage recogntion, J. Am. Chem. Soc. 123, 9184–9185.

    Article  CAS  Google Scholar 

  11. Tan X., Nalbant P., Toutchkine A., Hu D., Vorpagel E. R., Hahn K. M., and Lu H. P. (2004) Single-molecule study of protein-protein interaction dynamics in a cell signaling system. J. Phys. Chem. B. 108, 737–744.

    Article  CAS  Google Scholar 

  12. Hu D. H. and Lu H. P. (2003) Single-molecule nanosecond anisotropy dynamics of tethered protein motions, J. Phys. Chem. B 107, 618–626.

    Article  CAS  Google Scholar 

  13. Tan X., Hu D., Squier T. C., and Lu H. P. (2004) Probing nanosecond protein motions of calmodulin by single-molecule fluorescence anistropy. Appl. Phys. Lett. 83, 2420–2422.

    Article  Google Scholar 

  14. Chen Y., Hu D., Vorpegal E., and Lu H. P. (2002) Probing of single-molecule T4 lysozyme conformational dynamics by intramolecular fluorescence energy transfer. J. Phys. Chem. B. 107, 7947–7956.

    Article  Google Scholar 

  15. Iakoucheva L. M., Walker R. M., van Houten B., and Ackerman E. J. (2002) Fluorescence equilibrium and stopped-flow kinetic studies on the interactions of nucleotide excision repair protein XPA and replication protein A with DNA. Biochemistry 41, 131–143.

    Article  CAS  Google Scholar 

  16. Zhuang X., Bartley L. E., Babcock H. P., Russell R., Ha T., Herschlag D., and Chu S. (2000) A Single-molecule study of RNA catalysis and folding. Science 288, 2048–2051.

    Article  CAS  Google Scholar 

  17. Zhuang X., Kim H., Pereira M. J. B., Babcock H. P., Waiter N. G., and Chu S. (2002) Correlating structural dynamics and function in single ribozyme molecules. Science 296, 1473–1476.

    Article  CAS  Google Scholar 

  18. Wennmalm S., Edman L., and Rigler R. (1997) Conformational fluctuations in single DNA molecules. Proc Natl Acad Sci USA 94, 10,641–10,646.

    Article  CAS  Google Scholar 

  19. Ha T. Ting A. Y., Liang J., et al. (1999) Proc. Natl. Acad. Sci. USA 96, 893–898.

    Article  CAS  Google Scholar 

  20. Bustamante C. Guthold M., Zhu X., and Yang G. (1999) Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid. J. Biol. Chem. 274, 16,665–16,668.

    Article  CAS  Google Scholar 

  21. Argaman M., Golan R., Thomson N. H., and Hansma H. G. (1997) Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope. Nucleic Acids Res. 25, 4379–4384.

    Article  CAS  Google Scholar 

  22. Shoemaker B. A., Portman J. J., and Wolynes P. G. (2000) Speeding molecular recognition by using the folding funnel: The fly-casting mechanism. Proc. Natl. Acad. Sci. USA 97, 8868–8873.

    Article  CAS  Google Scholar 

  23. Frauenfelder H., Sligar S. G., and Wolynes P. G. (1991) The energy landscapes and motions of proteins. Science 254, 1598–1603.

    Article  CAS  Google Scholar 

  24. Richter P. H. and Eigen M. (1974) Diffusion controlled reaction rates in spherioidal geometry. application to repressor-operator association and membrane bound enzyme. Biophys. Chem. 2, 255–263.

    Article  CAS  Google Scholar 

  25. Frieden C. (1979) Slow transition and hysteretic behavior in enzymes. Annu. Rev. Biochem. 48, 471–489.

    Article  CAS  Google Scholar 

  26. Koshland D. E. (1998) Conformational changes: how small is big enough? Nat. Med. 4, xii–xiv.

    Article  Google Scholar 

  27. Iakoucheva L. M., Kimzey A. L., Masselon C. D., Bruce J. E., Garner E. C., Brown C. J., Dunker A. K., Smith R. D., and Ackerman E. J. (2001) Identification of intrinsic order and disorder in the DNA repair protein XPA. Prot. Sci. 10, 560–571.

    Article  CAS  Google Scholar 

  28. Wright P. E. and Dyson H. J. (2001) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331.

    Article  Google Scholar 

  29. Toutchkine A., Kraynov V., and Hahn K. (2003) Solvent-sensitive dyes to report protein conformational changes in living cells. J. Am. Chem. Soc. 125, 4132–4145.

    Article  CAS  Google Scholar 

  30. Hahn K. and Toutchkine A. (2002) Live-cell fluorescent biosensors for activated signaling proteins. Curr. Opin. Cell Biol. 14, 167–172.

    Article  CAS  Google Scholar 

  31. Kraynov V. S., Chamberlain C., Bokoch G. M., Schwartz M. A., Slabaugh S., and Hahn K. M. (2000) Localized Rac activation dynamics visualized in living cells. Science 290, 333–337.

    Article  CAS  Google Scholar 

  32. Lindahl T. and Wood R. D. (1999) Quality control by DNA repair. Science 286, 1897–1905.

    Article  CAS  Google Scholar 

  33. Spolar R. S. and Record, Jr. M. T. (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784.

    Article  CAS  Google Scholar 

  34. Wakasugi M. and Sancar A. (1999) Order of assembly of human DNA repair excision nuclease. J. Biol. Chem. 274, 18,759–18,768.

    Article  CAS  Google Scholar 

  35. Schmidt T., Schutz G. J., Baumgartner W., Gruber H. J., and Schindler H. (1995) Characterization of photophysics and mobility of single molecules in a fluid lipid membrane. J. Phys. Chem. 99, 17,662–17,668.

    Article  CAS  Google Scholar 

  36. Xu X. H. and Yeung E. S. (1997) Direct measurement of single-molecule diffusion and photodecomposition in free solution. Science 275, 1106–1109.

    Article  CAS  Google Scholar 

  37. Dickson R. M., Norris D. J., Tzeng Y. L., and Moerner W. E. (1996) Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science 274, 966–969.

    Article  CAS  Google Scholar 

  38. Ha T. T. E., Dhemla D. S., Selvin P. R., and Weiss S. (1996) Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett. 77, 3979–3982.

    Article  CAS  Google Scholar 

  39. Ha T., Glass J., Enderle T., Chemla D. S., and Weiss S. (1998) Hindered rotational diffusion and rotational jumps of single molecules. Phys. Rev. Lett. 80, 2093–2096.

    Article  CAS  Google Scholar 

  40. Noji H., Yasuda R., Yoshida M., and Kinosita K., Jr. (1997) Direct observation of the rotation of F1-ATPase. Nature 386, 299–302.

    Article  CAS  Google Scholar 

  41. Lu H. P. and Xie X. S. (1997) Single-molecule spectral fluctuations at room temperature. Nature 385, 143–146.

    Article  CAS  Google Scholar 

  42. Dickson R. M., Cubitt A. B., Tsien R. Y., and Moerner W. E. (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358.

    Article  CAS  Google Scholar 

  43. Weiss S. (1999) Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683.

    Article  CAS  Google Scholar 

  44. Jia Y., Talaga D. S., Lau W. L., Lu H. S. M., Degrado W.F., and Hochstrasser R. M. (1999) Folding dynamics of single GCN4 peptides by fluorescence resonant energy transfer confocal microscopy. Chem. Phys. 247, 69–83.

    Article  CAS  Google Scholar 

  45. Ha T., Rasnik I., Cheng W., Babcock H. P., Gauss G. H., Lohman T. M., and Chu S, (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase Nature 419, 638–641.

    Article  CAS  Google Scholar 

  46. Ha T., Zhuang X., Kim H. D., Orr J. W., Willamson A. R., and Chu S. (1999) Ligand-induced conformational changes observed in single RNA molecules. Proc. Natl. Acad. Sci. USA 99, 9077–9082.

    Article  Google Scholar 

  47. Eggeling C., Fries J. R., Brand L., Gunther R., and Seidel C. A. (1998) Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 95, 1556–1561.

    Article  CAS  Google Scholar 

  48. Schaffer J., Volkmer A., Eggeling C., Subramaniam V., Striker G., and Seidel C. A. M. (1999) Identification of single molecules in aqueous solution by time-resolved fluorescence anisotropy. J. Phys. Chem. A. 103, 331–336.

    Article  CAS  Google Scholar 

  49. Kaim G., Prummer M., Sick B., Zumofen G., Renn A., Wild U. P., and Dimroth P. (2002) Coupled rotation within single F0F1 enzyme complexes during ATP synthesis or hydrolysis. FEBS Lett. 525, 156–163.

    Article  CAS  Google Scholar 

  50. Griffin B. A., Adams S. R., Tsien R. Y. (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272.

    Article  CAS  Google Scholar 

  51. Charvin G., Bensimon D., and Croquette V. (2003) Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proc. Natl. Acad. Sci. USA 100, 9820–9825.

    Article  CAS  Google Scholar 

  52. Strick T. R., Allemand J.F., Bensimon D., and Croquette V. (1998) Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028.

    Article  CAS  Google Scholar 

  53. Dekker N. H., Rybenkov V. V., Duguet M., Crisona N. J., Cozzarelli N. R., Bensimon D., and Croquette V. (2002) The mechanism of type IA topoisomerases. Proc. Natl. Acad. Sci. USA 99, 12,126–12,131.

    Article  CAS  Google Scholar 

  54. Haber C., Wirtz D. (2000) Magnetic tweezers for DNA micromanipulation. Rev. Sci. Inst. 71, 4561–4570.

    Article  CAS  Google Scholar 

  55. Amblard F., Yurke B., Pargellis A., Leibler S. (1996) A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Rev. Sci. Inst. 67, 818–827.

    Article  CAS  Google Scholar 

  56. Abdul-Manan N., Aghazadeh B., Liu G. A., Majumdar A., Ouerfelli O., Siminovitch K. A., Rosen M. K. (1999) Structure of Cdc42 in complex with the GTPase-binding domain of the ‘Wiskott-Aldrich syndrome’ protein. Nature 399, 379–383.

    Article  CAS  Google Scholar 

  57. Rudolph M. G., Bayer P., Abo A., Kuhlmann J., Vetter I. R., Wittinghofer A. (1998) The Cdc42/Rac Interactive Binding Region Motif of the Wiskott Aldrich Syndrome Protein (WASP) Is Necessary but Not Sufficient for Tight Binding to Cdc42 and Structure Formation. J. Biol. Chem. 273, 18,067–18,076.

    Article  CAS  Google Scholar 

  58. Hoffman G. R., Cerione R. A. (2000) Flipping the Switch: Minireview The Structural Basis for Signaling through the CRIB Motif. Cell 102, 403–406.

    Article  CAS  Google Scholar 

  59. Iakoucheva L. M. and Dunker A. K. (2003) Order, disorder, and flexibility: prediction from protein sequence. Structure 11, 1316–1317.

    Article  CAS  Google Scholar 

  60. Buchko G. W., Ni S., Thrall B. D., and Kennedy M. A. (1998) Structural features of the minimal DNA binding domain (M98-F219) of human nucleotide excision repair protein XPA. Nucleic Acids Res. 26, 2779–2788.

    Article  CAS  Google Scholar 

  61. Milanovich N., Ratsep M., Reinot T., Hayes J. M., and Small G. H. (1998) Stark hole burning of aluminum phthalocyanine tetrasulfonate in normal and can cer cells. J. Phys. Chem. B. 102, 4265–4268.

    Article  CAS  Google Scholar 

  62. Devanesan P., Ariese F., Jankowiak R., Small G. J., Rogan E. G., and Cavalieri E. L. (1999) Preparation, isolation, and characterization of dibenzo-[a,1]pyrene diol epoxide-deoxyribonucleoside monophosphate adducts by HPLC and fluorescence line-narrowing spectroscopy. Chem. Res. Toxicol. 12, 789–795.

    Article  CAS  Google Scholar 

  63. Agmon N. (2000) Conformational Cycle of a Single Working Enzyme. J. Phys. Chem. 104, 7830–7834.

    Article  CAS  Google Scholar 

  64. Agmon N. and Hopfield J. J. (1983) Transient kinetics of chemical reactions with bounded diffusion perpendicular to the reaction coordinate: Intramolecular processes with slow conformational changes. J. Chem. Phys. 78, 6947–6959.

    Article  CAS  Google Scholar 

  65. Schenter G. K., Lu H. P., and Xie X. S. (1999) Statistical analyses and theoretical models of single-molecule enzymatic dynamics. J. Phys. Chem. A. 103, 10,477–10,488.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lu, H.P. (2005). Single-Molecule Study of Protein-Protein and Protein-DNA Interaction Dynamics. In: Ulrich Nienhaus, G. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 305. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-912-5:385

Download citation

  • DOI: https://doi.org/10.1385/1-59259-912-5:385

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-372-5

  • Online ISBN: 978-1-59259-912-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics