Skip to main content

High-Throughput Screening of Interactions Between G ProteinCoupled Receptors and Ligands Using Confocal Optics Microscopy

  • Protocol
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 305))

Abstract

Interactions of extracellular ligands with proteins in the cellular plasma membrane are the starting point for various intracellular signaling cascades. In the pharmaceutical industry, particular attention has been paid to G protein-coupled receptors (GPCRs), which are involved in various disease processes. In so-called high-throughput screening (HTS) campaigns, large medicinal chemistry compound libraries were searched for bioactive molecules that would either induce or inhibit the activity of a specific disease-relevant GPCR. In the respective drug discovery assays, the test compound typically competes with the physiological ligand for a binding site on the receptor. The transmembrane receptor is prepared in the form of membrane fragments or, as described here, in so-called virus-like particles (VLiPs). As hundreds of thousands of test compounds must be analyzed, there is a strict need for low volume binding assays to save the expensive bioreagents, and to reduce the consumption of the test compounds. In this chapter, we describe the application of confocal optics microscopy to measure GPCR ligand interactions in low microliter assay volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nathans J. and Hogness D. S. (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34, 807–814.

    Article  CAS  Google Scholar 

  2. Dixon R. A., Kobilka B. K., Strader D. J., Benovic J. L., Dohlman H. G., Frielle T., Bolanowski M. A., Bennett C. D., Rands E., and Diehl R. E. (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79.

    Article  CAS  Google Scholar 

  3. Ji T. H., Grossmann M., and Ji I. (1998) G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J. Biol. Chem. 273, 17,299–17,302.

    Article  CAS  Google Scholar 

  4. Alouani S. (2000) Scintillation proximity binding assay. Methods Mol. Biol. 138, 135–141.

    CAS  Google Scholar 

  5. Ramm P. (1999) Imaging systems in assay screening. Drug Discov. Today 4, 401–410.

    Article  CAS  Google Scholar 

  6. Sorg G., Schubert H. D., Buttner F. H., and Heilker R. (2002) Automated high throughput screening for serine kinase inhibitors using a LEADseeker scintillation proximity assay in the 1536-well format. J. Biomol. Screen. 7, 11–19.

    Article  CAS  Google Scholar 

  7. Sorg G., Schubert H. D., Buttner F. H., Valler M. J., and Heilker R. (2002) Comparison of photomultiplier tube and charge coupled device-based scintillation counting. Life Science News 11, 1–3.

    Google Scholar 

  8. Jessop R. A. (1998) Imaging proximity assays. Proc. SPIE 3259, 228–233.

    Article  CAS  Google Scholar 

  9. Banks P. and Harvey M. (2002) Considerations for using fluorescence polarization in the screening of g protein-coupled receptors. J. Biomol. Screen. 7, 111–117.

    Article  CAS  Google Scholar 

  10. Harris A., Cox S., Burns D., and Norey C. (2003) Miniaturization of fluorescence polarization receptor-binding assays using CyDye-labeled ligands. J. Biomol. Screen. 8, 410–420.

    Article  CAS  Google Scholar 

  11. Auer M., Moore K. J., Meyer-Almes F. J., Guenther R., Pope A. J., and Stoeckli K. (1998) Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS. Drug Discov. Today 3, 457–465.

    Article  CAS  Google Scholar 

  12. Zemanova L., Schenk A., Valler M. J., Nienhaus G. U., and Heilker R. (2003) Confocal optics microscopy for biochemical and cellular high-throughput screening. Drug Discov. Today 8, 1085–1093.

    Article  CAS  Google Scholar 

  13. Ehrenberg M. and Rigler R. (1974) Rotational brownian motion and fluorescence intensity fluctuations. Chem. Phys. 4, 390–401.

    Article  CAS  Google Scholar 

  14. Magde D., Elson E. L., and Webb W. W. (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708.

    Article  CAS  Google Scholar 

  15. Magde D., Elson E. L., and Webb W. W. (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61.

    Article  CAS  Google Scholar 

  16. Rigler R. (1995) Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology. J. Biotechnol. 41, 177–186.

    Article  CAS  Google Scholar 

  17. Thompson N. L. (1991) Fluorescence correlation spectroscopy, in Topics in Fluorescence Spectroscopy, Vol. 1 (Lakowicz J. R., ed.), Plenum Press, New York, pp. 337–378.

    Google Scholar 

  18. Chen Y., Muller J. D., So P. T., and Gratton E. (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553–567.

    Article  CAS  Google Scholar 

  19. Kask P., Palo K., Ullmann D., and Gall K. (1999) Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc. Natl. Acad. Sci. USA 96, 13,756–13,761.

    Article  CAS  Google Scholar 

  20. Schwille P., Meyer-Almes F. J., and Rigler R. (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72, 1878–1886.

    Article  CAS  Google Scholar 

  21. Winkler T., Kettling U., Koltermann A., and Eigen M. (1999) Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening. Proc. Natl. Acad. Sci. USA 96, 1375–1378.

    Article  CAS  Google Scholar 

  22. Kask P., Palo K., Fay N., Brand L., Mets U., Ullmann D., Jungmann J., Pschorr J., and Gall K. (2000) Two-dimensional fluorescence intensity distribution analysis: theory and applications. Biophys. J. 78, 1703–1713.

    Article  CAS  Google Scholar 

  23. Palo K., Brand L., Eggeling C., Jager S., Kask P., and Gall K. (2002) Fluorescence intensity and lifetime distribution analysis: toward higher accuracy in fluorescence fluctuation spectroscopy. Biophys. J. 83, 605–618.

    Article  CAS  Google Scholar 

  24. Klumpp M., Scheel A., Lopez-Calle E., Busch M., Murray K. J., and Pope A. J. (2001) Ligand binding to transmembrane receptors on intact cells or membrane vesicles measured in a homogeneous 1-microliter assay format. J. Biomol. Screen. 6, 159–170.

    Article  CAS  Google Scholar 

  25. Rudiger M., Haupts U., Moore K. J., and Pope A. J. (2001) Single-molecule detection technologies in miniaturized high throughput screening: binding assays for G protein-coupled receptors using fluorescence intensity distribution analysis and fluorescence anisotropy. J. Biomol. Screen. 6, 29–37.

    Article  CAS  Google Scholar 

  26. Scheel A. A., Funsch B., Busch M., Gradl G., Pschorr J., and Lohse M. J. (2001) Receptor-ligand interactions studied with homogeneous fluorescence-based assays suitable for miniaturized screening. J. Biomol. Screen. 6, 11–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zemanová, L., Schenk, A., Valler, M.J., Nienhaus, G.U., Heilker, R. (2005). High-Throughput Screening of Interactions Between G ProteinCoupled Receptors and Ligands Using Confocal Optics Microscopy. In: Ulrich Nienhaus, G. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 305. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-912-5:365

Download citation

  • DOI: https://doi.org/10.1385/1-59259-912-5:365

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-372-5

  • Online ISBN: 978-1-59259-912-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics