Skip to main content

Proteins in Motion

Resonance Raman Spectroscopy as a Probe of Functional Intermediates

  • Protocol
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 305))

Abstract

Elucidating proteins function at a level that allows for intelligent design and manipulation is essential in realization of their potential role in biomedical and industrial applications. It has become increasingly apparent though, that probing structures and functionalities under equilibrium conditions is not sufficient. Rather, many aspects of protein behavior and reactivity are rooted in protein dynamics. Thus, there is a growing effort to probe intermediate structures that occur transiently during the course of a proteins function in particular linked to the binding or release of a ligand or substrate. However, studies following the sequence of conformational changes triggered by the binding of sub-strate/ligand and the concomitant change in functional properties are inherently difficult because often the diffusion times are of the order of conformational relaxation times. This chapter describes methodologies for generating resonance Raman spectra from transient forms of hemoglobin under conditions that allow for the systematic exploration of conformational relaxation and functionality. Special consideration is given to Raman compatible protocols based on sol-gel encapsulation that allow for the preparation, trapping and temporal tuning of nonequilibrium population generated from either the addition or the removal of ligands/substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiro T. G. (1978) Resonance Raman spectra of hemoproteins. Methods Enzymol 54, 233–249.

    Article  CAS  Google Scholar 

  2. Spiro T. G. (1985) Resonance Raman spectroscopy as a probe of heme protein structure and dynamics. Adv. Protein Chem. 37, 111–159.

    Article  CAS  Google Scholar 

  3. Spiro T. G., Smulevich G., and Su C. (1990) Probing protein structure and dynamics with resonance Raman spectroscopy: cytochrome c peroxidase and hemoglobin. Biochemistry 29, 4497–4508.

    Article  CAS  Google Scholar 

  4. Spiro T. G. and Czernuszewicz R. S. (1995) Resonance Raman spectroscopy of metalloproteins. Methods Enzymol. 246, 416–460.

    Article  CAS  Google Scholar 

  5. Friedman J. M. (1994) Time-resolved resonance Raman spectroscopy as probe of structure, dynamics, and reactivity in hemoglobin. Methods Enzymol. 232, 205–231.

    Article  CAS  Google Scholar 

  6. Asher S. (1993) UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry. Part 1. Anal. Chem. 65, 59A–66A.

    Article  CAS  Google Scholar 

  7. Austin J., Jordan T., and Spiro T. (1993) Ultraviolet resonance Raman studies of proteins and related model compounds. In Biomolecular Spectroscopy Part A (Clark R. J. H. and Hester R. E., eds.), John Wiley and Sons, New York, pp. 55–127.

    Google Scholar 

  8. Kitagawa T. (1988) The heme protein structure and the iron histidine stretching mode. In Biological Application of Raman Spectroscopy, Vol. III (Spiro T. G., ed.), John Wiley & Sons, New York, pp. 97–131.

    Google Scholar 

  9. Rousseau D. L. and Friedman J. M. (1988) Transient and cryogenic studies of photodissociated hemoglobin and myoglobin. In Biological Applications of Raman Spectroscopy, Vol. III (Spiro T. G., ed.), John Wiley & Sons, New York, pp. 133–215.

    Google Scholar 

  10. Friedman J. M., Scott T. W., Stepnoski R. A., Ikeda-Saito M., and Yonetani T. (1983) The iron-proximal histidine linkage and protein control of oxygen binding in hemoglobin. A transient Raman study. J. Biol. Chem. 258, 10,564–10,572.

    Article  CAS  Google Scholar 

  11. Friedman J. M. (1985) Structure, dynamics, and reactivity in hemoglobin. Science 228, 1273–1280.

    Article  CAS  Google Scholar 

  12. Scott T. W. and Friedman J. M. (1984) Tertiary-structure relaxation in hemoglobin: a transient Raman study. J. Am. Chem. Soc. 106, 5677–5687.

    Article  CAS  Google Scholar 

  13. Avnir D., Braun S., Lev O., and Ottolenghi M. (1994) Enzymes and other proteins entrapped in sol-gel materials. Chem. Mater. 6, 1605–1614.

    Article  CAS  Google Scholar 

  14. Bettati S. and Mozzarelli A. (1997) T state hemoglobin binds oxygen noncooperatively with allosteric effects of protons, inositol hexaphosphate, and chloride. J. Biol. Chem. 272, 32,050–32,055.

    Article  CAS  Google Scholar 

  15. Bruno S., Bonaccio M., Bettati S., Rivetti C., Viappiani C., Abbruzzetti S., and Mozzarelli A. (2001) High and low oxygen affinity conformations of T state hemoglobin. Protein Sci. 10, 2401–2407.

    Article  CAS  Google Scholar 

  16. Dave B. C., Miller J. M., Dunn B., Valentine J. S., and Zink J. I. (1997) Encapsulation of proteins in bulk and thin film sol-gel matrices. J. Sol Gel Sci. Technol. 8, 629–634.

    Article  CAS  Google Scholar 

  17. Das T. K., Khan I., Rousseau D. L., and Friedman J. M. (1999) Temperature dependent quaternary state relaxation in sol-gel encapsulated hemoglobin. Biospectroscopy 5, S64–S70.

    Article  CAS  Google Scholar 

  18. Ellerby L. M., Nishida C. R., Nishida F., Yamanaka S. A., Dunn B., Valentine J. S., and Zink J. I. (1992) Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science 255, 1113–1115.

    Article  CAS  Google Scholar 

  19. Juszczak L. J. and Friedman J. M. (1999) UV resonance Raman spectra of ligand binding intermediates of sol-gel encapsulated hemoglobin. J. Biol. Chem. 274, 30,357–30,360.

    Article  CAS  Google Scholar 

  20. Khan I., Shannon C. F., Dantsker D., Friedman A. J., Perez-Gonzalezde-Apodaca J., and Friedman J. M. (2000) Sol-gel trapping of functional intermediates of hemoglobin: geminate and bimolecular recombination studies. Biochemistry 39, 16,099–16,109.

    Article  CAS  Google Scholar 

  21. Samuni U., Dantsker D., Khan I., Friedman A. J., Peterson E., and Friedman J. M. (2002) Spectroscopically and kinetically distinct conformational popula 300 tions of sol-gel encapsulated carbonmonoxy myoglobin: a comparison with hemoglobin. J. Biol. Chem. 25, 25.

    Google Scholar 

  22. Shibayama N. and Saigo S. (1995) Fixation of the quaternary structures of human adult haemoglobin by encapsulation in transparent porous silica gels. J. Mol. Biol. 251, 203–209.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Samuni, U., Friedman, J.M. (2005). Proteins in Motion. In: Ulrich Nienhaus, G. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 305. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-912-5:287

Download citation

  • DOI: https://doi.org/10.1385/1-59259-912-5:287

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-372-5

  • Online ISBN: 978-1-59259-912-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics