Skip to main content

Combined Use of XAFS and Crystallography for Studying Protein-Ligand Interactions in Metalloproteins

  • Protocol
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 305))

Abstract

This chapter describes the method of X-ray absorption spectroscopy when applied to the study of metal sites in proteins. The method requires the intense X-rays found only at synchrotron radiation sources, and is equally applicable to metalloproteins in dilute solutions, in fibers, films, and in crystalline states. In each case, structural changes occurring at metal sites during catalysis or ligandbinding are revealed with an accuracy and precision equivalent to atomic resolution crystallography. When combined with crystallographic data, of any resolution, X-ray absorption spectroscopy can yield atomic resolution threedimensional structural models of the metal sites, thus providing the level of structural detail necessary for understanding the chemical mechanisms involved in the active states of metalloproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koningsberger D. C. and Prins R. (eds.) (1988) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS andXANES. Wiley, New York.

    Google Scholar 

  2. Duke P. (2000) Synchrotron Radiation—Production and Properties, Oxford University Press, Oxforf, UK.

    Google Scholar 

  3. Gurman S. J., Binsted N., and Ross I. (1984) A rapid, exact curved-wave theory for EXAFS calculations. J. Phys. C. C17, 143–151.

    Article  Google Scholar 

  4. Gurman S. J., Binsted N., and Ross I. (1986) A rapid, exact curved-wave theory for EXAFS calculations: II. The multiple scattering contributions. J. Phys. C. C19, 1845–1861.

    Article  Google Scholar 

  5. Vvedensky D. D. (1992) Theory of X-ray absorption fine structure. Topics in Applied Physics 69, 139–176.

    Article  CAS  Google Scholar 

  6. Rehr J. J. and Albers R. C. (2000) Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Physics 72, 621–654.

    Article  CAS  Google Scholar 

  7. Rehr J. J. and Ankudinov A. L. (2001) Progress and challenges in the theory and interpretation of X-ray spectra. J. Synchrotron Rad. 8, 61–65.

    Article  CAS  Google Scholar 

  8. Murphy L. M., Strange R. W., and Hasnain S. S. (1997) A critical assessment of the evidence from XAFS and crystallography for the breakage of the imidazolate bridge furing vatalysis in CuZn superoxide dismutase. Structure 5, 371–379.

    Article  CAS  Google Scholar 

  9. Ranieri-Raggi M., Raggi A., Martini D., Benvenuti M., and Mangani S. (2003) XAFS of dilute biological samples. J. Synchrotron Rad. 10, 69–70.

    Article  CAS  Google Scholar 

  10. Derbyshire G., Cheung K. C., Sangsingkeow P., and Hasnain S. S. (1999) A low profile monolithic multi-element Ge X-ray detector for fluorescence applications. J. Synchrotron Rad. 6, 62–62.

    Article  CAS  Google Scholar 

  11. Cramer S. P., Tench O., Yocum M., and George G. N. (1988) A 13 element Ge detector for fluorescence EXAFS. Nucl. Inst. A 266, 586–591.

    Article  Google Scholar 

  12. Binsted N. and Hasnain S. S. (1996) State of the art analysis of whole X-ray absorption spectra. J. Synchrotron Rad. 3, 185–196.

    Article  CAS  Google Scholar 

  13. Joly Y. (2003) Calculating X-ray absorption near-edge structure at very low energy. J. Synchrotron Rad. 10, 58–63.

    Article  CAS  Google Scholar 

  14. Benfatto M., Della Long S., and Natoli R. C. (2003) The MXAN procedure: a new method for analyzing the XANES spectra of metalloproteins to obtain structural quantitative information. J. Synchrotron Rad. 10, 51–57.

    Article  CAS  Google Scholar 

  15. Chen L. X., Utschig L. M., Schlesselman S. L., and Tiede D. M. (2004) Temperature and light-induced structural changes in photosynthetic reaction center proteins probed by X-ray absorption fine structure. J. Phys. Chem. B108, 3912–3924.

    Article  Google Scholar 

  16. Hasnain S. S. and Strange R. W. (1990) In Biophysics and Synchrotron Radiation. (Hasnain S. S., ed.), Ellis Horwood Ltd, Chichester, UK, pp. 104–122.

    Google Scholar 

  17. Konnert J. H. and Hendrickson W. A. (1980) A restrained parameter thermafactor refinement procedure. Acta Cryst. A36, 344–350.

    Article  CAS  Google Scholar 

  18. Binsted N., Strange R. W., and Hasnain S. S. (1992) Constrained and restrained refinement in EXAFS data analysis with curved wave theory. Biochemistry 31, 12,117–12,125.

    Article  CAS  Google Scholar 

  19. Miyatake H., Mukai M., Adachi S., Nakamura H., Tamura K., Iizuka T., Shiro Y., Strange R. W., and Hasnain S. S. (1999) Iron coordination structures of oxygen sensor FixL characterized by FeK-edge extended X-ray absorption fine structure and resonance Raman spectroscopy. J. Biol. Chem. 274, 23,176–23,184.

    Article  CAS  Google Scholar 

  20. Miyatake H., Mukai M., Park S. Y., Adachi S., Tamura K., Nakamura H., Nakamura T., Tschuya T., Iizuka T., and Shiro Y. (2000) Sensory mechanism of oxygen sensor FixL from Rhizobium meliloti: crystallographic, mutagenesis and resonance Raman studies. J. Mol. Biol. 301, 415–431.

    Article  CAS  Google Scholar 

  21. Cheung K. C., Strange R. W., and Hasnain S. S. (2000) 3D EXAFS refinement of the Cu site of azurin sheds light on the nature of the structural change at the metal centre in an oxidation-reduction process: an integrated approach combining EXAFS and crystallography. Acta Cryst. D. D56, 697–704.

    Article  CAS  Google Scholar 

  22. Strange R. W., Eady R. R., Lawson D., and Hasnain S. S. (2003) XAFS studies of nitrogenase: the MoFe and VFe proteins and the use of crystallographic coordinates in three-dimensional EXAFS data analysis. J. Synchrotron Rad. 10, 71–75.

    Article  CAS  Google Scholar 

  23. Hasnain S. S. and Strange R. W. (2003) Marriage of XAFS and crystallography for structure-function studies of metalloproteins. J. Synchrotron Rad. 10, 9–15.

    Article  CAS  Google Scholar 

  24. Strange R. W., Ellis M. J., and Hasnain S. S. (2004) Atomic resolution crystallography and XAFS. Coord. Chem. Rev., in press.

    Google Scholar 

  25. Samygina V. R., Antonyuk S. V., Lamzin V. S., and Popov A. N. (2000) Improving the X-ray resolution by reversible flash-cooling combined with concentration screening, as exemplified with PPase. Acta Cryst. D. D56, 595–603.

    Article  CAS  Google Scholar 

  26. Stevenson C. E. M., Mayer S. M., Delarbre L., and Lawson D. M. (2001) Crystal annealing—nothing to lose. Journal of Crystal Growth 232, 629–637.

    Article  CAS  Google Scholar 

  27. Kriminski S., Caylor C. L., Nonato M. C., Finkelstein K. D., and Thorne R. E. (2002) Flash-cooling and annealing of protein crystals. Acta Cryst. D 58, 459–471.

    Article  CAS  Google Scholar 

  28. Ellis M. J., Antonyuk S., and Hasnain S. S. (2002) Resolution improvement from “in situ annealing” of copper nitrite reductase crystals. Acta Cryst. D 58, 456–458.

    Article  Google Scholar 

  29. Adman E. T., Godden J. E., and Turley S. (1995) The structure of copper nitrite reductase from achromobactor cycloclastes at 5 pH values, with NO2 bound, and with type-2 Cu(II) depleted. J. Biol. Chem. 270, 27,458–27,474.

    Article  CAS  Google Scholar 

  30. Dodd F. E., Hasnain S. S., Abraham Z. H. L., Eady R. R., and Smith B. E. (1997) Structures of a blue-copper nitrite reductase and its substrate-bound complex. Acta Cryst. D. 53, 406–418.

    Article  CAS  Google Scholar 

  31. Tainer J. A., Getzoff E. D., Richardson J. S., and Richardson D. C. (1983) Structure and mechanism of copper, zinc superoxide dismutase. Nature 306, 284–287.

    Article  CAS  Google Scholar 

  32. Kuriyan J., Wilz S., Karpus M., and Pesko G. A. (1986) X-ray structure and refinement of carbonmonoxy Fe(II) myoglobin at 1.5Å resolution. J. Mol. Biol. 192, 133–154.

    Article  CAS  Google Scholar 

  33. Vojtechovsky J., Chu K., Berendzen J., Sweet R. M., and Schlichting I. (1999) Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys.J. 77, 2153–2174.

    Article  CAS  Google Scholar 

  34. Bianconi A., Congio-Castellano A., Durham P. J., Hasnain S. S., and Phillips S. (1985) The CO bond angle of carboxymyoglobin determined by angular resolved XANES spectroscopy. Nature 318, 685–687.

    Article  CAS  Google Scholar 

  35. Ascone I., Fourme R., and Hasnain S. S. (2003) Introductory overview: X-ray absorption spectroscopy and structural genomics. J. Synchrotron Rad. 10, 1–3.

    Article  Google Scholar 

  36. Lee P. A., and Pendry J. B. (1975) Theory of the extended X-ray absorption fine structure. Phys. Rev. B 11, 2795–2811.

    Article  CAS  Google Scholar 

  37. Ashley C. A., and Doniach S. (1975) Theory of extended X-ray absorption spectroscopy (EXAFS) in crystalline solids. Phys. Rev. B. B11, 1279–1288.

    Article  Google Scholar 

  38. Orpen A. G., Brammer L., Allen F. H., Kennard O., Watson D. G., and Taylor R. (1989) Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and coordination complexes of the d-and f-block metals. J. Chem. Soc. Dalton Trans. Supplement, S1–S83.

    Google Scholar 

  39. Castagnetto J. M., Hennessy S. W., Roberts V. A., Getzoff E. D., Tainer J. A., and Pique M. E. (2002) MDB: the Metalloproetin Database and Browser at The Scripps Research Institute. Nucl. Acids Res. 30, 379–382.

    Article  CAS  Google Scholar 

  40. Sheldrick G. M. and Schneider T. R. (1997) SHELX: High-resolution refinement. Meth. Enzymol. 227, 319–343.

    Article  Google Scholar 

  41. Abola A., Bernstein F. C., Bryant S. H., Koetzle T. F., and Weng J. (1987) In Crystallographic Databases—Information Content, Software Systems, Scientific Applications. (Allen F. H., Bergerhoff G., and Sievers R., eds.), pp. 107–132, Data Commision of the International Union of Crystallography, Bonn/Cambridge/Chester.

    Google Scholar 

  42. Blackburn N. J., Strange R. W., Reedijk J., Volbeda A., Farooq A., Karlin K. D., and Zubieta J. (1989) X-ray absorption edge spectroscopy of copper(I) complexes. Coordination geometry of copper(I) in reduced forms of copper proteins and their derivatives with carbon monoxide. Inorg. Chem. 28, 1349–1357.

    Article  CAS  Google Scholar 

  43. Kau L., Spira-Solomon D., Penner-Hahn J. E., Hodgson K. O., and Solomon E. I. (1987) X-ray Absorption edge determination of the oxidation state and coordination number: application to the type 3 Cu site in rhus vernicefera laccase and its reaction with oxygen. J. Am. Chem. Soc. 109, 6433–6442.

    Article  CAS  Google Scholar 

  44. Hough M. and Hasnain S. S. (1999) Crystallographic structures of bovine copperzinc superoxide dismutase reveal asymmetry in two subunits: functionally important three and five coordinate copper sites captured in the same crystal. J. Mol. Biol. 287, 579–592.

    Article  CAS  Google Scholar 

  45. Hough M. A., Strange R. W., and Hasnain S. S. (2000) Conformational variability of the Cu site in one subunit of bovine CuZn superoxide dismutase: the importance of mobility in the Glu119-Leu142 loop region for catalytic function. J. Mol. Biol. 304, 231–241.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Strange, R.W., Hasnain, S.S. (2005). Combined Use of XAFS and Crystallography for Studying Protein-Ligand Interactions in Metalloproteins. In: Ulrich Nienhaus, G. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 305. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-912-5:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-912-5:167

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-372-5

  • Online ISBN: 978-1-59259-912-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics