Probing Heme Protein-Ligand Interactions by UV/Visible Absorption Spectroscopy

  • Karin Nienhaus
  • G. Ulrich  Nienhaus
Part of the Methods in Molecular Biology™ book series (MIMB, volume 305)


Ultraviolet/visible (UV/vis) absorption spectroscopy is a powerful tool for steady-state and time-resolved studies of protein-ligand interactions. Prosthetic groups in proteins frequently have strong electronic absorbance bands that depend on the oxidation, ligation, and conformation states of the chromophores. They are also sensitive to conformational changes of the polypeptide chain into which they are embedded. Steady-state absorption spectroscopy provides information on ligand binding equilibria, from which the Gibbs free energy differences between the ligated and unligated states can be computed. Time-resolved absorption spectroscopy allows one to detect short-lived intermediate states that may not get populated significantly under equilibrium conditions, but may nevertheless be of crucial importance for biological function. Moreover, the energy barriers that have to be surmounted in the reaction can be determined. In this chapter, we present a number of typical applications of steady-state and ns timeresolved UV/vis absorption spectroscopy in the study of ligand binding to the central iron in heme proteins.

Key Words

Ultraviolet/visible absorption spectroscopy flash photolysis ligand binding time-resolved spectroscopy geminate recombination heme proteins hemoglobin myoglobin neuroglobin 


  1. 1.
    Weber G. (1992) Protein Interactions, Chapman & Hall, New York.Google Scholar
  2. 2.
    Antonini E. and Brunori M. (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, North-Holland, Amsterdam.Google Scholar
  3. 3.
    Cantor C. R. and Schimmel P. R. (1980) Biophysical Chemistry, III, W. H. Freeman and Company, New York.Google Scholar
  4. 4.
    Nienhaus K., Lamb D. C., Deng P., and Nienhaus G. U. (2002) The effect of ligand dynamics on heme electronic transition band III in myoglobin. Biophys. J. 82, 1059–1067.PubMedCrossRefGoogle Scholar
  5. 5.
    Douzou P. (1977) Cryobiochemistry, Academic Press, London.Google Scholar
  6. 6.
    Marriot G. (1998) Caged Compounds. Methods Enzymology 291.Google Scholar
  7. 7.
    Leuba S. H. and Zlatanova J. (2001) Biology at the Single Molecule Level, Pergamon, Oxford, UK.Google Scholar
  8. 8.
    Rigler R., Orrit M., and Basche T. (2002) Single Molecule Spectroscopy, Springer-Verlag, New York.Google Scholar
  9. 9.
    Moore J. W. and Pearson R. G. (1981) Kinetics and Mechanism, John Wiley & Sons, New York.Google Scholar
  10. 10.
    Hammes G. G. (2000) Thermodynamics and Kinetics for the Biological Sciences, Wiley-Interscience, New York.Google Scholar
  11. 11.
    Hammes G. G. (1978) Principles of chemical kinetics, Academic Press, London.Google Scholar
  12. 12.
    Hammes G. G. (1974) Techniques of Chemistry, Wiley-Interscience, New York.Google Scholar
  13. 13.
    Gutfreund H. (1995) Kinetics for the life sciences, University Press, Cambridge.CrossRefGoogle Scholar
  14. 14.
    Steinbach P. J., Chu K., Frauenfelder H., Johnson J. B., Lamb D. C., Nienhaus G. U., Sauke T. B., and Young R. D. (1992) Determination of rate distributions from kinetic experiments. Biophys. J. 61, 235–245.PubMedCrossRefGoogle Scholar
  15. 15.
    Ormos P., Szaraz S., Cupane A., and Nienhaus G. U. (1998) Structural factors controlling ligand binding to myoglobin: a kinetic hole-burning study. Proc. Natl. Acad. Sci. USA 95, 6762-6727.Google Scholar
  16. 16.
    Müller J. D., McMahon B. H., Chien E. Y., Sligar S. G., and Nienhaus G. U. (1999) Connection between the taxonomic substates and protonation of histidines 64 and 97 in carbonmonoxy myoglobin. Biophys. J. 77, 1036–1051.PubMedCrossRefGoogle Scholar
  17. 17.
    Ostermann A., Waschipky R., Parak F. G., and Nienhaus G. U. (2000) Ligand binding and conformational motions in myoglobin. Nature 404, 205–208.PubMedCrossRefGoogle Scholar
  18. 18.
    Bourgeois D., Vallone B., Schotte F., Arcovito A., Miele A. E., Sciara G., Wulff M., Anfinrud P., and Brunori M. (2003) Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography: Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Proc. Natl. Acad. Sci. USA 100, 8704–8709.PubMedCrossRefGoogle Scholar
  19. 19.
    Brunori M., Cutruzzola F., Savino C., Travaglini-Allocatelli C., Vallone B., and Gibson Q. H. (1999) Structural dynamics of ligand diffusion in the protein matrix: A study on a new myoglobin mutant Y(B10) Q(E7) R(E10). Biophys. J. 76, 1259–1269.PubMedCrossRefGoogle Scholar
  20. 20.
    Chu K., Vojtchovsky J., McMahon B. H., Sweet R. M., Berendzen J., and Schlichting I. (2000) Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923.PubMedCrossRefGoogle Scholar
  21. 21.
    Nienhaus K., Deng P., Kriegl J. M., and Nienhaus G. U. (2003) Structural Dynamics of Myoglobin: The Effect of Internal Cavities on Ligand Migration and Binding. Biochemistry 42, 9647–9658.PubMedCrossRefGoogle Scholar
  22. 22.
    Schotte F., Lim M., Jackson T. A., Smirnov A. V., Soman J., Olson J. S., Phillips G. N., Jr., Wulff M., and Anfinrud P. A. (2003) Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300, 1944–1947.PubMedCrossRefGoogle Scholar
  23. 23.
    Scott E. E., Gibson Q. H., and Olson J. S. (2001) Mapping the pathways for O2 entry into and exit from myoglobin. J. Biol. Chem. 276, 5177–5188.PubMedCrossRefGoogle Scholar
  24. 24.
    Kriegl J. M., Bhattacharyya A. J., Nienhaus K., Deng P., Minkow O., and Nienhaus G. U. (2002) Ligand binding and protein dynamics in neuroglobin. Proc. Natl. Acad. Sci. USA 99, 7992–7997.PubMedCrossRefGoogle Scholar
  25. 25.
    Nienhaus K., Kriegl J. M., and Nienhaus G. U. (2004) Structural dynamics in the active site of murine neuroglobin and its effects on ligand binding. J. Biol. Chem. 279, 22,944–22,952.PubMedCrossRefGoogle Scholar
  26. 26.
    Pesce A., Nardini M., Ascenzi P., Geuens E., Dewilde S., Moens L., Bolognesi M., Riggs A. F., Hale A., Deng P., Nienhaus G. U., Olson J. S., and Nienhaus K. (2004) ThrE11 regulates O2 affinity in cerebratulus lacteus minihemoglobin. J. Biol. Chem. 279, 33,662–33,672.PubMedCrossRefGoogle Scholar
  27. 27.
    Lide D. R. (1994) Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL.Google Scholar
  28. 28.
    Orii Y. and Morita M. (1977) Measurement of the pH of frozen buffer solutions by using pH indicators. J. Biochem. 81, 163–168.PubMedGoogle Scholar
  29. 29.
    Ansari A., Jones C. M., Henry E. R., Hofrichter J., and Eaton W. A. (1993) Photoselection in polarized photolysis experiments on heme proteins. Biophys. J. 64, 852–868.PubMedCrossRefGoogle Scholar
  30. 30.
    Ansari A. and Szabo A. (1993) Theory of photoselection by intense light pulses. Influence of reorientational dynamics and chemical kinetics on absorbance measurements. Biophys. J. 64, 838–851.PubMedCrossRefGoogle Scholar
  31. 31.
    Barth A. and Corrie J. E. (2002) Characterization of a new caged proton capable of inducing large pH jumps. Biophys. J. 83, 2864–2871.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Karin Nienhaus
    • 1
  • G. Ulrich  Nienhaus
    • 1
  1. 1.Department of BiophysicsUniversity of UlmUlmGermany

Personalised recommendations