Protein-Ligand Interaction Probed by Time-Resolved Crystallography

  • Marius Schmidt
  • Hyotcherl Ihee
  • Reinhard Pahl
  • Vukica Šrajer
Part of the Methods in Molecular Biology™ book series (MIMB, volume 305)


Time-resolved (TR) crystallography is a unique method for determining the structures of intermediates in biomolecular reactions. The technique reached its mature stage with the development of the powerful third-generation synchrotron X-ray sources, and the advances in data processing and analysis of timeresolved Laue crystallographic data. A time resolution of 100 ps has been achieved and relatively small structural changes can be detected even from only partial reaction initiation. The remaining challenge facing the application of this technique to a broad range of biological systems is to find an efficient and rapid, system-specific method for the reaction initiation in the crystal. Other frontiers for the technique involve the continued improvement in time resolution and further advances in methods for determining intermediate structures and reaction mechanisms. The time-resolved technique, combined with trapping methods and computational approaches, holds the promise for a complete structure-based description of biomolecular reactions.

Key Words

Time-resolved macromolecular crystallography Laue diffraction intermediate states reaction mechanism SVD 


  1. 1.
    Moffat K. and Henderson R. (1995) Freeze trapping of reaction intermediates. Curr. Opin. Struct. Biol. 5, 656–663.PubMedCrossRefGoogle Scholar
  2. 2.
    Schlichting I. and Chu K. (2000) Trapping intermediates in the crystal: ligand binding to myoglobin. Curr. Opin. Struct. Biol. 10, 744–752.PubMedCrossRefGoogle Scholar
  3. 3.
    Stoddard B. L. (2001) Trapping reaction intermediates in macromolecular crystals for structural Analysis. Methods in Enzymology 24, 125–138.CrossRefGoogle Scholar
  4. 4.
    Ursby T., Weik M., Fioravanti E., Delarue M., Goeldner M., and Bourgeois D. (2002) Cryophotolysis of caged compounds: a technique for trapping interme-diate states in protein crystals. Acta Cryst. D58, 607–614.Google Scholar
  5. 5.
    Hellingwerf K., Hendriks J., and Gensch T. (2003) On the configurational and conformational changes in photoactive yellow protein that leads to signal generation in Ectothiorhodospira halophila.J Biol. Phys. 28, 295–412.Google Scholar
  6. 6.
    Brudler R., Rammelsberg R., Woo T. T., Getzoff E. D., and Gerwert K. (2001) Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy. Nature Struct. Biol. 8, 265–270.PubMedCrossRefGoogle Scholar
  7. 7.
    Ujj L., Devanathan S., Meyer T. E., Cusanovich M. A., Tollin G., and Atkinson G. H. (1998) New photocycle intermediates in the photoactive yellow protein from Ecothiorhodospira halophila: picosecond transient absorption spectroscopy. Biophys. J. 75, 406–412.PubMedCrossRefGoogle Scholar
  8. 8.
    Haupts U., Tittor J., and Oesterhelt D. (1999) Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu. Rev. Biophys. Biomol. Struct. 283, 67–99.Google Scholar
  9. 9.
    Mizutani Y. and Kitagawa T. (2001) Ultrafast structural relaxation of myoglobin following photodissociation of carbon monoxide probed by time-resolved resonance Raman cpectroscopy. J. Phys. Chem. B 105, 10,992–10,999.CrossRefGoogle Scholar
  10. 10.
    Jackson T. A., Lim M., and Anfinrud P. (1994) Complex nonexponential relaxation in myoglobin after photodissociation of MbCO: measurement and analysis from 2 ps to 56 µs. Chem. Phys 180, 131–140.CrossRefGoogle Scholar
  11. 11.
    Ansari A., Jones C. M., Henry E. R., Hofrichter J., and Eaton W. A. (1994) Conformational relaxation and ligand binding in myoglobin. Biochemistry 33, 5128–5145.PubMedCrossRefGoogle Scholar
  12. 12.
    Xie X. and Simon J. D. (1991) Protein conformational relaxation following photodissociation of co from carbonmonoxymyoglobin-picosecond circular-dichroism and absorption studies. Biochemistry 30, 3682–3692.PubMedCrossRefGoogle Scholar
  13. 13.
    Schotte F., Lim M., Jackson T. A., Smirnov A. V., Soman J., Olson J. S., Phillips G. N. J., Wulff M., and Anfinrud P. (2003) Watching a protein as it functions with 150ps time-resolved X-ray crystallography. Science 300, 1944–1947.PubMedCrossRefGoogle Scholar
  14. 14.
    Krinsky S., Fundamentals of Hard X-ray Synchrotron Radiation Sources, in Third-Generation HardX-ray Synchrotron Radiation Sources, Mills D., Ed., John Wiley & Sons, Inc., New York (2002).Google Scholar
  15. 15.
    Ren Z., Bourgeois D., Helliwell J. R., Moffat K., Šrajer V., and Stoddard B. L. (1999) Laue crystallography: coming of age. J. Synchrotron Rad. 6, 891–917.CrossRefGoogle Scholar
  16. 16.
    Šrajer V., Ren Z., Teng T.-Y., Schmidt M., Ursby T., Bourgeois D., Pradervand C., Schildkamp W., Wulff M., and Moffat K. (2001) Protein conformational relaxation and ligand migration in myoglobin: a nanosecond to millisecond molecular movie from time-resolved Laue X-ray diffraction. Biochemistry 40, 13,802–13,815.PubMedCrossRefGoogle Scholar
  17. 17.
    Bourgeois D., Vallone B., Schotte F., Arcovito A., Miele A. E., Sciara G., Wulff M., Anfinrud P., and Brunori M. (2003) Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proc. Natl. Acad. Sci. 100, 8704–8709.PubMedCrossRefGoogle Scholar
  18. 18.
    Srajer V., Teng T.-Y., Ursby T., Pradervand C., Ren Z., Adachi S., Schildkamp W., Bourgeois D., Wulff M., and Moffat K. (1996) Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science 274, 1726–1729.PubMedCrossRefGoogle Scholar
  19. 19.
    Neutze R., Pebay-Peyroula E., Edman K., Royant A., Navarro J., and Landau E. M. (2002) Bacteriorhodopsin: a high resolution structural view of vectorial proton transport. Biochim. Biophys. Acta 1565, 144–167.PubMedCrossRefGoogle Scholar
  20. 20.
    Ren Z., Perman B., Šrajer V., Teng T.-Y., Pradervand C., Bourgeois D., Schotte F., Ursby T., Kort R., Wulff Mand Moffat K. (2001) A molecularmovie at 1.8 A resolution displays the photocycle of photoactive yellow protein, a eubacterial blue-light receptor, from nanoseconds to seconds. Biochemistry 40, 13,788–13,801.PubMedCrossRefGoogle Scholar
  21. 21.
    Genick U. K., Borgstahl G. E., Ng K., Ren Z., Pradervand C., Burke P. M., Šrajer V., Teng T.-Y., Schildkamp W., McRee D. E., Moffat K., and Getzoff E. D. (1997) Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475.PubMedCrossRefGoogle Scholar
  22. 22.
    Perman B., Šrajer V., Ren Z., Teng T-.Y., Pradervand C., Ursby T., Bourgeois D., Schotte F., Wulff M., Kort R., Hellingwerf K., and Moffat K. (1998) Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle. Science 279, 1946–1950.PubMedCrossRefGoogle Scholar
  23. 23.
    Crosson S. and Moffat K. (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14, 1067–1075.PubMedCrossRefGoogle Scholar
  24. 24.
    Karplus M. (1999) In Simplicity and Complexity in Proteins and Nucleic Acids, (Frauenfelder H., Deisenhofer J., and Wolynes P., eds.). Dahlem University Press, Belin, 139.Google Scholar
  25. 25.
    Moffat K. (2001) Time-resolved biochemical crystallography: a mechanistic perspective. Chem. Rev. 101, 1569–1581.PubMedCrossRefGoogle Scholar
  26. 25a.
    Steinfeld J. I., Francisco J. S., and Haase W. L. (1989) Chemical Kinetics and Dynamics. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  27. 26.
    Moffat K. (1989) Time-Resolved Macromolecular Crystallography. Annu. Rev.Biophys. Biophys. Chem. 18, 309–332.PubMedCrossRefGoogle Scholar
  28. 27.
    Schmidt M., Rajagopal S., Ren Z., and Moffat K. (2003) Application of singular value decomposition to the analysis of time-resolved macromolecular x-ray data. Biophys. J. 84, 2112–2129.PubMedCrossRefGoogle Scholar
  29. 28.
    Schmidt M., Pahl R., Šrajer V., Anderson S., Ren Z., Ihee H., and Moffat K. (2004) Protein kinetics: structures of intermediates and reaction mechanism from time-resolved x-ray data. Proc. Natl. Acad. Sci. 101, 4799–4804.PubMedCrossRefGoogle Scholar
  30. 29.
    Rajagopal S., Schmidt M., Anderson S., Ihee H., and Moffat K. (2004) Analysis of experimental time-resolved crystallographic data by singular value decomposition. Acta Cryst. D 60, 860–871.CrossRefGoogle Scholar
  31. 30.
    Abdel-Meguid S. S., Jeruzalmi D., and Sanderson M. R. (1996) Preliminary characterization of crystals. In Crystallographic methods and Protocols, Vol. 56 (Jones C., Mulloy B., and Sanderson M. R., eds.). Humana Press, Totowa, NJ, 55–86.CrossRefGoogle Scholar
  32. 31.
    Carrell H. L. and Glusker J. P. (2001) Crystallography of Biological Macromolecules, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  33. 32.
    Ren Z. and Moffat K. (1995) Quantitative analysis of synchrotron laue diffraction patterns in macromolecular crystallography. J. Appl. Cryst. 10, 461–481.CrossRefGoogle Scholar
  34. 33.
    Ren Z. and Moffat K. (1995) Deconvolution of energy overlaps in laue diffraction. J. Appl. Cryst. 28, 482–493.CrossRefGoogle Scholar
  35. 34.
    Campbell J. W. (1995) LAUEGEN, an X-windows-based program for the processing of Laue diffraction data. J. Appl. Cryst. 28, 228–236.CrossRefGoogle Scholar
  36. 35.
    Arzt S., Campbell J. W., Harding M. M., Hao Q., and Helliwell J. R. (1999) LSCALE-the new normalization, scaling and absorption correction program in the Daresbury Laue software suite. J. Appl. Cryst. 32, 554–562.CrossRefGoogle Scholar
  37. 36.
    Wakatsuki S. (1993) LEAP, Laue evaluation analysis package, for time-resolved protein crystallography, in CCP4 Study Weekend Proceedings: Data Collectionand Processing, Sawyer L., Isaacs N. W., and Bailey S., eds., CLRC Daresbury, Warrington, UK, 71–79.Google Scholar
  38. 37.
    Bourgeois D., Nurizzo D., Kahn R., and Cambillau C. (1998) An integration routine based on profile fitting with optimized fitting area for the evaluation of weak and/or overlapped two-dimensional Laue or monochromatic patterns. J. Appl. Cryst. 31, 22–35.CrossRefGoogle Scholar
  39. 39.
    Scott W. G., Murray J. B., Arnold J. R. P., Stoddard B. L., and Klug A. (1996) Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science 274, 2065–2069.PubMedCrossRefGoogle Scholar
  40. 40.
    Singer P. T., Smalas A., Carty R. P., Mangel W. F., and Sweet R. M. (1993) The hydrolytic water molecule in trypsin revealed by time-resolved Laue crystallography. Science 259, 669–673.PubMedCrossRefGoogle Scholar
  41. 41.
    Fulop V., Phizackerley R. P., Soltis S. M., Clifton I. J., Wakatsuki S., Erman J., Hajdu J., and Edwards S. L. (1994) Laue diffraction study on the structure of cytochrome c peroxidase compound I. Structure 2, 201–208.PubMedCrossRefGoogle Scholar
  42. 42.
    Bolduc J. M., Dyer D. H., Scott W. G., Singer P., Sweet R. M., Koshland D. E. J., and Stoddard B. L. (1995) Mutagenesis and Laue structures of enzyme intermediates: isocitrate dehydrogenase. Science 268, 1312–1318.PubMedCrossRefGoogle Scholar
  43. 43.
    Gouet P., Jouve H. M., Williams P. A., Andersson I., Andreoletti P., Nussaume L., and Hajdu J. (1996) Ferryl intermediates of catalase captured by time-resolved Weisenberg crystallography and UV-VIS spectroscopy. Nature Struct. Biol. 3, 951–956.PubMedCrossRefGoogle Scholar
  44. 44.
    Helliwell J. R., Nieh Y. P., Raftery J., Cassetta A., Habash J., Carr P. D., Ursby T., Wulff M., Thompson A. W., C., N. A., and Hadener A. (1998) Time resolved structures of hydroxymethylbilane synthase (Lys59Gln mutant) as it is loaded with substrate determined by Laue diffraction. J. Chem. Soc. Faraday Trans. 94, 2615–2622.CrossRefGoogle Scholar
  45. 45.
    Schlichting I. and Goody R. S. (1997) Triggering methods in crystallographic enzyme kinetics. Methods in Enzymology 277, 467–490.PubMedCrossRefGoogle Scholar
  46. 47.
    Hori T., Moriyama H., Kawaguchi J., Hayashi-Iwasaki Y., Oshima T., and Tanaka N. (2000) The initial step of the thermal unfolding of 3-isopropylmalate dehydrogenase detected by the temperature-jump Laue method. Protein Engineering 13, 527–533.PubMedCrossRefGoogle Scholar
  47. 48.
    McCray J. A. and Trentham D. R. (1989) Properties and uses of photoreactive caged compounds. Annu. Rev. Biophys. Biophys. Chem. 18, 239–270.PubMedCrossRefGoogle Scholar
  48. 49.
    Corrie J. E. T., and Trenhtam D. R. (1993) Biological Applications of Photochemical Switches, Vol. 2, Wiley, New York, NY.Google Scholar
  49. 50.
    Schlichting I., Almo S. C., Rupp G., Wilson K., Petratos K., Lentfer A., Wittinghofer A., Kabash W., Pai E. F., Petsko G. A., and Goody R. S. (1990) Time-resolved X-ray crystallographic study of the conformational change in Ha-ras p21 protein on GTP hydrolysis. Nature 345, 309–315.PubMedCrossRefGoogle Scholar
  50. 51.
    Stoddard B. L., Koenigs P., Porter N., Petratos K., Petsko G. A., and Ringe D. (1991) Observation of the light-triggered binding of pyrone to chymotrypsin by Laue X-ray crystallography. Proc. Natl. Acad. Sci. 88, 5503–5507.PubMedCrossRefGoogle Scholar
  51. 52.
    Duke E. M. H., Wakatsuki W., Hadfield A., and Johnson L. N. (1994) Laue and monochromatic diffraction studies on catalysis in phosphorylase b crystals. Protein Sci. 3, 1178–1196.PubMedCrossRefGoogle Scholar
  52. 53.
    Stoddard B. L., Cohen B. E., Brubaker M., Mesecar A. D., and Koshland D. E. J. (1998) Millisecond Laue structures of an enzyme-product complex using photocaged substrate analogs. Nature Struct. Biol. 5, 891–897.PubMedCrossRefGoogle Scholar
  53. 54.
    Chen Y., Šrajer V., Ng K., LeGrand A., and Moffat K. (1994) Optical monitoring of protein crystals in time-resolved x-ray experiments— microspectrophotometer design and performance. Rev. Sci. Instrum. 65, 1506–1511.CrossRefGoogle Scholar
  54. 55.
    Hadfield A. and Hajdu J. (1993) A fast and portable microspectrophotometer for protein crystallography. J. Appl. Cryst. 26, 839–842.CrossRefGoogle Scholar
  55. 56.
    Sakai K., Matsui Y., Kouyama T., Shiro Y., and Adachi S.-I. (2002) Optical monitoring of freeze trapped reaction intermediates in protein crystals: A microspectrophotometer for cryogenic protein crystallography. J. Appl. Cryst. 35, 270–273.CrossRefGoogle Scholar
  56. 57.
    Bourgeois D., Vernede X., Adam V., Fioravanti E., and Ursby T. (2002) A microspectrophotometer for UV-visible absorption and fluorescence studies of protein crystals. J. Appl. Cryst. 35, 319–326.CrossRefGoogle Scholar
  57. 58.
    Anderson S., Šrajer V., Pahl R., Rajagopal S., Schotte F., Anfinrud P., Wulff M., and Moffat K. (2004) Chromophore conformation and the evolution of tertiary structural changes in photoactive yellow protein. Structure 12, 1039–1045.PubMedCrossRefGoogle Scholar
  58. 59.
    Bourgeois D., Ursby T., Wulff M., Pradervand C., LeGrand A., Schildkamp W., Laboure S., Šrajer V., Teng T.-Y., Roth M., and Moffat K. (1996) Feasibility and realization of single-pulse laue diffraction on macromolecular crystals at ESRF. J. Synchrotron Rad. 3, 65–74.CrossRefGoogle Scholar
  59. 60.
    Schotte F., Techert S., Anfinrud P., Šrajer V., Moffat K., and Wulff M. (2002) Picosecond structural studies using pulsed synchrotron radiation. In Third-Generation HardX-Ray Synchrotron Radiation Sources. (Mills D., ed.). John Wiley & Sons, Inc., New York, NY, 345–401.Google Scholar
  60. 61.
    Knapp J. E., Šrajer V., Pahl R., and Royer W. E. J. (2004) Immobilization of Scapharca HbI crystals improves data quality of a time-resolved crystallographic experiment. Micron. 35, 107–108.PubMedCrossRefGoogle Scholar
  61. 62.
    Šrajer V., Crosson S., Schmidt M., Key J., Schotte F., Anderson S., Perman B., Ren Z., Teng T.-Y., Bourgeois D., Wulff M., and Moffat K. (2000) Extraction of accurate structure factor amplitudes from Laue data: wavelength normalization with wiggler and undulator X-ray sources. J. Synchrotron Rad. 7,236–244.CrossRefGoogle Scholar
  62. 63.
    Bourgeois D., Wagner U., and Wulff M. (2000) Towards automated Laue data processing: application to the choice of optimal X-ray spectrum. Acta Cryst. D56, 973–985.Google Scholar
  63. 64.
    Helliwell J. R. (1992) Macromolecular Crystallography With Synchrotron Radiation. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  64. 65.
    Drenth J. (1999) Principles of Protein X-Ray Crystallography, Springer, New York, NY.Google Scholar
  65. 66.
    Henderson R., and Moffat J. K. (1971) The difference Fourier technique in protein crystallography: errors and their treatment. Acta Cryst. B 27, 1414–1420.CrossRefGoogle Scholar
  66. 67.
    Ursby T., and Bourgeois D. (1997) Improved estimation of structure-factor difference amplitudes from poorly accurate data. Acta Cryst. A 53, 564–575.CrossRefGoogle Scholar
  67. 68.
    McRee D. E. (1999) Practical Protein Crystallography, Academic Press, San Diego, CA.Google Scholar
  68. 69.
    Jones T. A., Bergdoll M., and Kjeldgaard MO. (1990) A macromolecular modeling environment. In Crystallographic and Modeling Methods in Molecular Design. (Bugg C. and Ealick S., eds.). Springer-Verlag Press, New York, NY, 189–195.Google Scholar
  69. 70.
    Henry E. R. and Hofrichter J. (1992) Singular value decomposition: Application to analysis of experimental data. Methods in Enzymology 210, 129–192.CrossRefGoogle Scholar
  70. 71.
    Carson M. (1997) Ribbons. In Methods in En., zymology, Vol. 277. (Sweet R. M., and Carter C. W., eds.) Academic Press, 493–505.Google Scholar
  71. 72.
    Hajdu J., Neutze R., Sjogren T., Edman K., Szoke H., Wilmouth R. C., and Wilmot C. M. (2000) Analyzing protein functions in four dimensions. Nature Struct. Biol. 7, 1006–1012.PubMedCrossRefGoogle Scholar
  72. 73.
    Moffat K. (1998) Time-Resolved Crystallography. Acta Cryst. A 54, 833–841.CrossRefGoogle Scholar
  73. 74.
    Schlichting I., Berendzen J., Chu K., Stock A. M., Maves S. A., Benson D. E., Sweet R. M., Ringe D., Petsko G. A., and Sligar S. G. (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622.PubMedCrossRefGoogle Scholar
  74. 75.
    Berglund G. I., Carlsson G. H., Smith A. T., Szoke H., Henriksen A., and Hajdu J. (2002) The catalysis pathway of horseradish peroxidase at high resolution. Nature 417, 463–468.PubMedCrossRefGoogle Scholar
  75. 76.
    Schlichting I., Berendzen J., Phillips G. N., and Sweet R. M. (1994) Crystal structure of photolyzed carbonmonoxy-myoglobin. Nature 371, 808–812.PubMedCrossRefGoogle Scholar
  76. 77.
    Teng T. Y., Šrajer V., and Moffat K. (1994) Photolysis-induced structural changes in single crystals of carbonmonoxymyoglobin at 40K. Nature Struct. Biol. 1, 701–705.PubMedCrossRefGoogle Scholar
  77. 78.
    Teng T. Y., Šrajer V., and Moffat K. (1997) Initial trajectory of carbon monoxide after photodissociation from myoglobin at cryogenic temperatures. Biochemistry 36, 12,087–12,100.PubMedCrossRefGoogle Scholar
  78. 79.
    Chu K., Vojtechovsky J., McMahon B. H., Sweet R. M., Berendzen J., and Schlichting I. (2000) Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923.PubMedCrossRefGoogle Scholar
  79. 80.
    Ostermann A., Waschipky R., Parak F. G., and Nienhaus G. U. (2000) Ligand binding and conformational motions in myoglobin. Nature 404, 205–208.PubMedCrossRefGoogle Scholar
  80. 81.
    Genick U. K., Soltis S. M., Kuhn P., Canestrelli I. L., and Getzoff E. D. (1998) Structure at 0.85 angstrom resolution of an early protein photocycle intermediate. Nature 392, 206–209.PubMedCrossRefGoogle Scholar
  81. 82.
    Kendrew J. C., Dickerson R. E., Strandberg B. E., Hart R. G., Davies D. R., Phillps D. C. and Shore V. C. (1960) Structure of myoglobin. A three-dimensional Fourier synthesis at 2 A resolution. Nature 185.Google Scholar
  82. 83.
    Ansari A., Berendzen J., Bowne S. F., Frauenfelder H., T., I. I. E., Sauke T. B., Shyamsunder E., and Young R. D. (1985) Protein states and protein quakes. Proc. Natl. Acad. Sci. 82, 5000–5004.PubMedCrossRefGoogle Scholar
  83. 84.
    Kachalova G. S., Popov A. N., and Bartunik H. D. (1999) A steric mechanism for inhibition of CO binding to heme proteins. Science 284, 473–476.PubMedCrossRefGoogle Scholar
  84. 85.
    Meyer T. E. (1985) Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophile phototrophic bacterium Ectothiorhodospira halophila. Biochim. Biophys. Acta. 806, 175–183.PubMedCrossRefGoogle Scholar
  85. 86.
    Sprenger W. W., Hoff W. D., Armitage J. P., and Hellingwerf K. J. (1993) The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J. Bacteriol. 175, 3096–3104.PubMedGoogle Scholar
  86. 87.
    Cusanovich M. A. and Meyer T. E. (2003) Photactive yellow protein: a prototypic PAS domain sensory protein and development of a common signaling mechanism. Biochemistry 42, 4759–4770.PubMedCrossRefGoogle Scholar
  87. 88.
    Winick H. (1995) The linac coherent light source (LCLS): A fourth generation light source using the SLAC linac. J. Elec. Spec. Rel. Phenom. 75, 1–8.CrossRefGoogle Scholar
  88. 89.
    Wiik B. H. (1997) The TESLA project: an accelerator facility for basic science. Nucl. Inst. Meth. Phys. Res. B 398, 1–17.CrossRefGoogle Scholar
  89. 90.
    Rossi G., Renzi M., Eikenberry E. F., Tate M. W., Bilderback D. H., Fontes E., Wixted R., Barna S., and Gruner S. M. (1999) Tests of a prototype pixel array detector for microsecond time-resolved X-ray diffraction. J. Synchrotron Rad. 6, 1096–1105.CrossRefGoogle Scholar
  90. 91.
    Rajagopal S., Kostov K., and Moffat K. (2004) Analytical trapping: Extraction of time-independent structures from time-dependent crystallographic data. J. Struct. Biol., in press.Google Scholar
  91. 92.
    Schweins T., Langen R., and Warshel A. (1994) Why mutagenesis studies not located the general base in Ras P21. Nature Struct. Biol. 1, 476–484.PubMedCrossRefGoogle Scholar
  92. 93.
    Henkelman G., Johannesson G., and Jonsson B. (2000) Methods for finding saddle points and minimum energy paths. In Progress on Theoretical Chemistry and Physics. (Schwartz S. D., ed.). Kluwer Academic Publishers, Dordrecht, The Netherlands, 269.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Marius Schmidt
    • 1
  • Hyotcherl Ihee
    • 2
  • Reinhard Pahl
    • 3
  • Vukica Šrajer
    • 4
  1. 1.Department of PhysicsTechnical University of MunichGarchingGermany
  2. 2.Department of Chemistry and School of Molecular ScienceKAISTDaejeonSouth Korea
  3. 3.Consortium for Advanced Radiation SourcesThe University of ChicagoChicago
  4. 4.Consortium for Advanced Radiation Sources and Department of Biochemistry and Molecular BiologyChicago

Personalised recommendations