Skip to main content

Surface-Functionalized Nanoparticles for Controlled Drug Delivery

  • Protocol
NanoBiotechnology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 303))

Abstract

Nanoparticles have been extensively investigated in drug-delivery systems. Especially, the effectiveness of the surface-functionalized nanoparticles, which consist of copolymers with functional molecules, is well demonstrated. This chapter describes the complete technique for the preparation of surface-functionalized nanoparticles. Tetracycline with an affinity to bone was chosen as a model material for surface functionalization. There are two steps for the preparation of tetracycline-modified nanoparticles. The first step is the conjugation of poly(D,L-lactide-coglycolic acid) with tetracycline via carbodiimide chemistry and is the most often employed. Three kinds of techniques—the emulsification-diffusion method, nanoprecipitation, and the dialysis method—are used for nanoparticle formation of the resulting copolymer. Prepared nanoparticles having a size <200 nm and a hydrophilic surface layer can be applied for bone-specific drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cammas, S., Suzuki, K., Sone, C., Sakurai, Y., Kataoka, K., and Okano, T. (1997) Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J. Control. Release 48, 157–164.

    Article  CAS  Google Scholar 

  2. Löbenberg, R., Araujo, L., Briesen, H. V., Rodgers, E., and Kreuter, J. (1998) Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after i.v. injection to rats. J. Control. Release 50, 21–30.

    Article  PubMed  Google Scholar 

  3. Dunn, S. E., Brindley, A., Davis, S. S., Davies, M. C., and Illum, L. (1994) Polystyrene-poly(ethylene glycol) (PS-PEG2000) particles as model system for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution. Pharm. Res. 11, 1016–1022.

    Article  PubMed  CAS  Google Scholar 

  4. Stolnik, S., Illum, L., and Davis, S. S. (1995) Long circulation microparticulate drug carriers. Adv. Drug Deliv. Rev. 16, 195–214.

    Article  CAS  Google Scholar 

  5. Yoo, H. S., Lee, K. H., Oh, J. E., and Park, T. G. (2000) In vitro and in vivo antitumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release 68, 419–431.

    Article  PubMed  CAS  Google Scholar 

  6. Calvo, P., Gouritin, B., Brigger, I., Lasmezas, C., Deslys, J. P., Williams, A., Andreux, J. P., Dormont, D., and Couvreur, P. (2001) PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J. Neurosci. Methods 111, 151–155.

    Article  PubMed  CAS  Google Scholar 

  7. Li, Y. P, Pei, Y. Y., Zhou, Z. H., Zhang, X. Y., Gu, Z. H., Ding, J., Zhou, J. J., and Gao, X. J. (2001) PEGylated polycyanoacrylate nanoparticles as tumor necrosis factor-a carriers. J. Control. Release 71, 287–296.

    Article  PubMed  Google Scholar 

  8. Wroblewski, S., Berenson, M., Kopeckova, P., and Kopecek, J. (2001) Potential of lectin-N-(2-hydroxypropyl)methacrylamide copolymer-drug conjugates for the treatment of pre-cancerous conditions. J. Control. Release 74, 283–293.

    Article  PubMed  CAS  Google Scholar 

  9. Misra, D. N. (1991) Adsorption and orientation of tetracycline on hydroxyapatite. Calcif. Tissue Int. 48, 362–367.

    Article  PubMed  CAS  Google Scholar 

  10. Valuev, I. L., Chupov, V. V., and Valuev, L. I. (1998) Chemical modification of polymers with physiologically active species using water-soluble carbodiimides. Biomaterials 19, 41–43.

    Article  PubMed  CAS  Google Scholar 

  11. Kim, I. S., Jeong, Y. I., Cho, C. S., and Kim, S. H. (2000) Core-shell type polymeric nanoparticles composed of poly(L-lactic acid) and poly(N-isopropylacrylamide). Int. J. Pharm. 211, 1–8.

    Article  PubMed  CAS  Google Scholar 

  12. Leroux, J. C., Cozens, R., Roesel, J. L., Galli, B., Kubel, F., Doelker, E., and Gurny, R. (1995) Pharmacokinetics of a novel HIV-1 protease inhibitor incorporated into biodegradable or enteric nanoparticles following intravenous and oral administration to mice. J. Pharm. Sci. 84, 1387–1391.

    Article  PubMed  CAS  Google Scholar 

  13. Kwon, H. Y., Lee, J. Y., Choi, S. W., Jang, Y., and Kim, J. H. (2001) Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method. Colloids Surf. A: Physicochem. Eng. Aspects 182, 123–130.

    Article  CAS  Google Scholar 

  14. Quintanar-Guerrero, D., Allémann, E., Fessi, H., and Doelker, E. (1999) Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int. J. Pharm. 188, 155–164.

    Article  PubMed  CAS  Google Scholar 

  15. Berton, M., Allémann, E., Stein, C. Y., and Gurny, R. (1999) Highly loaded nanoparticulate carrier using an hydrophobic antisense oligonucleotide complex. Eur. J. Pharm. Sci. 9, 163–170.

    Article  PubMed  CAS  Google Scholar 

  16. Choi, S. W., Kwon, H. Y., Kim, W. S., and Kim, J. H. (2002) Thermodynamic parameters on poly(L,D-lactide-co-glycolide) particle size in emulsification-diffusion process. Colloids Surf. A: Physicochem. Eng. Aspects 201, 283–289.

    Article  CAS  Google Scholar 

  17. Schubert, M. A. and Müller-Goymann, C. C. (2003) Solvent injection as a new approach for manufacturing lipid nanoparticles—evaluation of the method and process parameters. Eur. J. Pharm. Biopharm. 55, 125–131.

    Article  PubMed  CAS  Google Scholar 

  18. Panagi, Z., Beletsi, A., Evangelatos, G., Livaniou, E., Ithakissios, D. S., and Avgoustakis, K. (2001) Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA-mPEG nanoparticles. Int. J. Pharm. 221, 143–152.

    Article  PubMed  CAS  Google Scholar 

  19. Vittaz, M., Bazile, D., Spenlehauer, G., Verrecchia, T., Veillard, M., Puisieux, F., and Labarre, D. (1996) Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 17, 1553–1643.

    Article  Google Scholar 

  20. Kwon, G. S., Naito, M., Yokoyama, M., and Okano, T. (1995) Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 12, 192–195.

    Article  PubMed  CAS  Google Scholar 

  21. Lasic, D. D. (1992) Mixed micelles in drug delivery. Nature 355, 279–280.

    Article  PubMed  CAS  Google Scholar 

  22. Kim, S. Y., Shin, I. G., Lee, Y. M., Cho, C. S., and Sung, Y. K. (1998) Methoxy poly(ethylene glycol) and ε-caprolactone amphiphilic block copolymeric micelle containing indomethacin: II. Micelle formation and drug release behaviours. J. Control. Release 51, 13–22.

    Article  PubMed  CAS  Google Scholar 

  23. Oh, J. E., Nam, Y. S., Lee, K. H., and Park, T. G. (1999) Conjugation of drug to poly(D,L-lactic-co-glycolic acid) for controlled release from biodegradable microspheres. J. Control. Release 57, 269–280.

    Article  PubMed  CAS  Google Scholar 

  24. Aksoy, S., Tumturk, H., and Hasirci, N. (1998) Stability of α-amylase immobilized on poly(methyl methacrylate-acrylic acid) microspheres. J. Biotechnol. 60, 37–46.

    Article  PubMed  CAS  Google Scholar 

  25. Yoo, H. S. and Park, T. G. (2001) Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J. Control. Release 70, 63–70.

    Article  PubMed  CAS  Google Scholar 

  26. Kim, I. S. and Kim, S. H. (2001) Evaluation of polymeric nanoparticles composed of cholic acid and methoxy poly(ethylene glycol). Int. J. Pharm. 226, 23–29.

    Article  PubMed  CAS  Google Scholar 

  27. Ryu, J. G., Jeong, Y. I., Kim, I. S., Lee, J. H., Nah, J. W., and Kim, S. H. (2000) Clonazepam release from core-shell type nanoparticles of poly(o-caprolactone): poly(ethylene glycol): poly(o-caprolactone) triblock copolymers. Int. J. Pharm. 200, 231–242.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, S. Y., Ha, J. C., and Lee, Y. M. (2000) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(e-caprolactone) (PCL) amphiphilic block copolymeric nanospheres II. Thermo-responsive drug release behaviors. J. Control. Release 65, 345–358.

    Article  PubMed  CAS  Google Scholar 

  29. Jeon, H. J., Jeong, Y. I., Jang, M. K., Park, Y. H., and Nah, J. W. (2000) Effect of solvent on the preparation of surfactant-free poly(D,L-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics. Int. J. Pharm. 207, 99–108.

    Article  PubMed  CAS  Google Scholar 

  30. Allen, C. Maysinger, D., and Eisenberg, A. (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B: Biointerfaces 16, 3–27.

    Article  CAS  Google Scholar 

  31. Nakanishi, T., Fukushima, S., Okamoto, K., Suzuki, M., Matsumura, Y., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K. (2001) Development of the polymer micelle carrier system for doxorubicin. J. Control. Release 74, 295–302.

    Article  PubMed  CAS  Google Scholar 

  32. Cho, C. S., Cho, K. Y., Park, I. K., Kim, S. H., Sasagawa, T., Uchiyama, M., and Akaike, T. (2001) Receptor-mediated delivery of all trans-retinoic acid to hepatocyte using poly(L-lactic acid) nanoparticles coated with galactose-carrying polystyrene. J. Control. Release 77, 7–15.

    Article  PubMed  CAS  Google Scholar 

  33. Dawson, G. F. and Halbert, G. W. (2000) The in vitro cell association of invasin coated polylactide-co-glycolide nanoparticles. Pharm. Res. 17, 1420–1425.

    Article  PubMed  CAS  Google Scholar 

  34. Stella, B., Arpicco, S., Peracchia, M. T., Desmaele, D., Hoebeke, J., Renoir, M., D’Angelo, J., Cattel, L., and Couvreur, P. (2000) Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89, 1452–1464.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the Korea Institute of S&T Evaluation and Planning (National Research Laboratory Program, 2000-NNL-01-C-032).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Choi, SW., Kim, WS., Kim, JH. (2005). Surface-Functionalized Nanoparticles for Controlled Drug Delivery. In: Rosenthal, S.J., Wright, D.W. (eds) NanoBiotechnology Protocols. Methods in Molecular Biology™, vol 303. Humana Press. https://doi.org/10.1385/1-59259-901-X:121

Download citation

  • DOI: https://doi.org/10.1385/1-59259-901-X:121

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-276-6

  • Online ISBN: 978-1-59259-901-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics