Advertisement

Probing DNA Structure With Nanoparticles

  • Rahina Mahtab
  • Catherine J. Murphy
Part of the Methods in Molecular Biology™ book series (MIMB, volume 303)

Abstract

Semiconductor nanoparticles, also known as quantum dots, are receiving increasing attention for their biological applications. These nanomaterials are photoluminescent and are being developed both as dyes and as sensors. Here we describe our “sensor” use of quantum dots to detect different intrinsic DNA structures. Structural polymorphism in DNA may serve as a biological signal in vivo, highlighting the need for recognition of DNA structure in addition to DNA sequence in biotechnology assays.

Key Words

DNA oligonucleotides quantum dots semiconductor nanoparticles 

References

  1. 1.
    Watson, J. D. and Crick, F. H. C. (1953) A structure for deoxyribonucleic acid. Nature 171, 737–738.PubMedCrossRefGoogle Scholar
  2. 2.
    Franklin, R. E. and Gosling, R. G. (1953) Molecular configuration of sodium thymonucleate. Nature 171, 740–741.PubMedCrossRefGoogle Scholar
  3. 3.
    Goodman, S. D. and Nash, H. A. (1989) Functional replacement of a protein-induced bend in a DNA recombination site. Nature 341, 251–254.PubMedCrossRefGoogle Scholar
  4. 4.
    Perez-Martin, J. and Espinosa, M. (1994) Correlation between DNA bending and transcriptional activation at a plasmid promoter. J. Mol. Biol. 241, 7–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Fry, M. and Loeb, L. A. (1994) The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc. Natl. Acad. Sci. USA 91, 4950–4954.PubMedCrossRefGoogle Scholar
  6. 6.
    Marathias, V. M., Jerkovic, B., and Bolton, P. H. (1999) Damage increases the flexibility of duplex DNA. Nucleic Acids Res. 27, 1854–1858.PubMedCrossRefGoogle Scholar
  7. 7.
    Kelley, S. O. and Barton, J. K. (1999) Electron transfer between bases in double-helical DNA. Science 283, 375–381.PubMedCrossRefGoogle Scholar
  8. 8.
    Wells, R. D. and Harvey, S. C. (eds.). (1988) Unusual DNA Structures, Springer-Verlag, New York.Google Scholar
  9. 9.
    Hagerman, P. J. (1990) Sequence-directed curvature of DNA. Annu. Rev. Biochem. 59, 755–781.PubMedCrossRefGoogle Scholar
  10. 10.
    Crothers, D. M., Haran, T. E., and Nadeau, J. G. (1990) Intrinsically bent DNA. J. Biol. Chem. 265, 7093–7096.PubMedGoogle Scholar
  11. 11.
    Goodsell, D. S., Kopka, M. L., Cascio, D., and Dickerson, R. E. (1993) Crystal structure of CATGGCCATG and its implications for A-tract bending models. Proc. Natl. Acad. Sci. USA 90, 2930–2934.PubMedCrossRefGoogle Scholar
  12. 12.
    Calladine, C. R. and Drew, H. R. (1997) Understanding DNA, 2nd ed., Academic, San Diego.Google Scholar
  13. 13.
    Moore, H., Greenwell, P. W., Liu, C.-P., Arnheim, N., and Petes, T. D. (1999) Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl. Acad. Sci. USA 96, 1504–1509.PubMedCrossRefGoogle Scholar
  14. 14.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The protein data bank. Nucleic Acids Res. 28, 235–242.PubMedCrossRefGoogle Scholar
  15. 15.
    Murphy, C. J. (2001) Photophysical probes of DNA sequence-directed structure and dynamics. Adv. Photochem. 26, 145–217.CrossRefGoogle Scholar
  16. 16.
    Weller, H. (1993) Quantized semiconductor particles: a novel state of matter for materials science. Adv. Mater. 5, 88–95.CrossRefGoogle Scholar
  17. 17.
    Alivisatos, A. P. (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13,226–13,239.CrossRefGoogle Scholar
  18. 18.
    Alivisatos, A. P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937.CrossRefGoogle Scholar
  19. 19.
    Murphy, C. J. and Coffer, J. L. (2002) Quantum dots: a primer. Appl. Spectrosc. 56, 16A–27A.CrossRefGoogle Scholar
  20. 20.
    Murphy, C. J. (2002) Optical sensing with quantum dots. Anal. Chem. 74, 520A–526A.PubMedCrossRefGoogle Scholar
  21. 21.
    Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.PubMedCrossRefGoogle Scholar
  22. 22.
    Chan, W. C. W. and Nie, S. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.PubMedCrossRefGoogle Scholar
  23. 23.
    Mattousi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, C. V., Mikulec, F. V., and Bawendi, M. G. (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12,142–12,150.CrossRefGoogle Scholar
  24. 24.
    Pathak, S., Choi, S.-K., Arnheim, N., and Thompson, M. E. (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123, 4103–4104.PubMedCrossRefGoogle Scholar
  25. 25.
    Gerion, D., Pinaud, F., Williams, S. C., Parak, W. J., Zanchet, D., Weiss, S., and Alivisatos, A. P. (2001) Synthesis and properties of biocompatible, water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861–8871.CrossRefGoogle Scholar
  26. 26.
    Han, M. Y., Gao, X. H., Su, J. Z., and Nie, S. (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenthal, S. J., Tomlinson, A., Adkins, E. M., Schroeter, S., Adams, S., Swafford, L., McBride, J., Wang, Y. Q., DeFelice, L. J., and Blakely, R. D. (2002) Targeting cell surface receptors with ligand-conjugated nanocrystals. J. Am. Chem. Soc. 124, 4586–4594.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang, S. P., Mamedova, N., Kotov, N. A., Chen, W., and Studer, J. (2002) Antibody/antigen immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett. 2, 817–822.CrossRefGoogle Scholar
  29. 29.
    Mahtab, R., Rogers, J. P., and Murphy, C. J. (1995) Protein-sized quantum dot luminescence can distinguish between “straight,” “bent” and “kinked” oligonucleotides. J. Am. Chem. Soc. 117, 9099–9100.CrossRefGoogle Scholar
  30. 30.
    Mahtab, R., Rogers, J. P., Singleton, C. P., and Murphy, C. J. (1996) Preferential adsorption of a “kinked” DNA to a neutral curved surface: comparisons to and implications for nonspecific DNA-protein interactions. J. Am. Chem. Soc. 118, 7028–7032.CrossRefGoogle Scholar
  31. 31.
    Mahtab, R., Harden, H. H., and Murphy, C. J. (2000) Temperature-and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”-DNA interactions. J. Am. Chem. Soc. 122, 14–17.CrossRefGoogle Scholar
  32. 32.
    Lakowicz, J. R., Grycynski, I., Grycynski, Z., Nowaczyk, K., and Murphy, C. J. (2000) Time-resolved spectral observations of cadmium-enriched cadmium sulphide nanoparticles and the effects of DNA oligomer binding. Anal. Biochem. 280, 128–136.PubMedCrossRefGoogle Scholar
  33. 33.
    Murphy, C. J. and Mahtab, R. (2000) Detection of unusual DNA structures with nanoparticles. Proc. SPIE 3924, 10–16.CrossRefGoogle Scholar
  34. 34.
    Gearheart, L., Caswell, K. K., and Murphy, C. J. (2001) Recognition of hypermethylated triplet repeats in vitro by cationic nanoparticles. J. Biomed. Opt. 6, 111–115.PubMedCrossRefGoogle Scholar
  35. 35.
    Simha, R., Frisch, H. L., and Eirich, F. R. (1953) The adsorption of flexible macromolecules. J. Phys. Chem. 57, 584–589.CrossRefGoogle Scholar
  36. 36.
    Winter, R. B., Berg, O. G., and von Hippel, P. H. (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. III. The E. coli lac repressor-operator interaction: kinetic measurements and conclusions. Biochemistry 20, 6961–6977.PubMedCrossRefGoogle Scholar
  37. 37.
    Anderson, C. F. and Record, M. T. Jr. (1995) Salt-nucleic acid interactions. Annu. Rev. Phys. Chem. 46, 657–700.PubMedCrossRefGoogle Scholar
  38. 38.
    Record, T. M. Jr. and Spolar, R. S. (1990) Some thermodynamic principles of nonspecific and site-specific protein-DNA onteractions, in The Biology of Nonspecific Protein-DNA Interactions (Revzin, A., ed.), CRC Press, Boca Raton, FL.Google Scholar
  39. 39.
    Haq, I., Lincoln, P., Suh, D., Norden, B., Chowdhry, B. Z., and Chaires, J. B. (1995) Interaction of Δ and L-[Ru(phen)2dppz]2+ with DNA: a calorimetric and equilibrium binding study. J. Am. Chem. Soc. 117, 4788–4796.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Rahina Mahtab
    • 1
  • Catherine J. Murphy
    • 2
  1. 1.Department of Physical SciencesSouth Carolina State UniversityOrangeburg
  2. 2.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia

Personalised recommendations