Skip to main content

N-Terminal Ubiquitination

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 301))

Summary

An important step in the ubiquitin proteolytic cascade is specific recognition of the substrate by a member of the ubiquitin ligases family of proteins—an E3, that is followed by generation of the polyubiquitin degradation signal. For most substrates, it is believed, though it has been demonstrated experimentally only for a few, that the first ubiquitin moiety is conjugated, via its C-terminal Gly76 residue, to an ε-NH2 group of an internal Lys residue. Recent findings indicate that for several proteins, the first ubiquitin moiety is fused linearly to the α-NH2 group of the N-terminal residue. Important biological questions relate (1) to the evolutionary requirement for an alternative mode of ubiquitination, (2) to the identity of the set of proteins in the proteome that undergoes N-terminal ubiquitination, and (3) to the relationship between N-terminal ubiquitination and N-terminal acetylation. In this chapter we describe methods that will enable researchers to identify this novel mode of ubiquitination.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pickart, C. M. (2001) Mechanisms of ubiquitination. Annu. Rev. Biochem. 70, 503–533.

    Article  PubMed  CAS  Google Scholar 

  2. Weissman, A. M. (2001) Themes and variations on ubiquitylation. Nat. Rev. Cell Mol. Biol. 2, 169–179.

    Article  CAS  Google Scholar 

  3. Schwartz, D. C. and Hochstrasser M. (2003) A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321–328.

    Article  PubMed  CAS  Google Scholar 

  4. Huang, D. T., Walden, H., Duda, D., and Schulman, B. A. (2004) Ubiquitin-like protein activation. Oncogene 23, 1958–1971.

    Article  PubMed  CAS  Google Scholar 

  5. Scherer, D. C., Brockman, J. A., Chen, Z., Maniatis, T., and Ballard, D. W. (1995) Signal-induced degradation of IκBα requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92, 11259–11263.

    Article  PubMed  CAS  Google Scholar 

  6. King, R. W., Glotzer, M., and Kirschner, M. W. (1996) Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol. Biol. Cell 7, 1343–1357.

    PubMed  CAS  Google Scholar 

  7. Hou, D., Cenciarelli, C., Jensen, J. P., Nguygen, H. B., and Weissman, A. M. (1994) Activation-dependent ubiquitination of a T cell antigen receptor subunit on multiple intracellular lysines. J. Biol. Chem. 269, 14244–14247.

    PubMed  CAS  Google Scholar 

  8. Goldknopf, I. L. and Busch, H. (1977) Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc. Natl. Acad. USA 74, 864–868.

    Article  CAS  Google Scholar 

  9. Gronroos, E., Hellman, U., Heldin, C. H., and Ericsson, J. (2002) Control of Smad7 stability by competition between acetylation and ubiquitination. Mol. Cell 10, 483–493.

    Article  PubMed  CAS  Google Scholar 

  10. Breitschopf, K., Bengal, E., Ziv, T., Admon, A., and Ciechanover, A. (1998) A novel site for ubiquitination: the N-terminal residue and not internal lysines of MyoD is essential for conjugation and degradation of the protein. EMBO J. 17, 5964–5973.

    Article  PubMed  CAS  Google Scholar 

  11. Reinstein, E., Scheffner, M., Oren, M., Schwartz, A. L., and Ciechanover, A. (2000) Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene 19, 5944–5950.

    Article  PubMed  CAS  Google Scholar 

  12. Aviel, S., Winberg, G., Massucci, M., and Ciechanover, A. (2000) Degradation of the Epstein-Barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway: targeting via ubiquitination of the N-terminal residue. J. Biol Chem. 275, 23491–23499.

    Article  PubMed  CAS  Google Scholar 

  13. Ikeda, M., Ikeda, A., and Longnecker, R. (2002) Lysine-independent ubiquitination of the Epstein-Barr virus LMP2A. Virology 300, 153–159.

    Article  PubMed  CAS  Google Scholar 

  14. Bloom, J., Amador, V., Bartolini, F., DeMartino, G., and Pagano, M. (2003) Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation Cell 115, 1–20.

    Article  Google Scholar 

  15. Coulombe, P., Rodier, G., Bonneil, E., Thibault, P., and Meloche, S. (2004) N-terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Mol. Cell. Biol. 24, 6140–6150.

    Article  PubMed  CAS  Google Scholar 

  16. Fajerman, I., Schwartz, A. L., and Ciechanover, A. (2004) Degradation of the Id2 developmental regulator: targeting via N-terminal ubiquitination. Biochem. Biophys. Res. Commun. 314, 505–512.

    Article  PubMed  CAS  Google Scholar 

  17. Trausch-Azar, J. S., Lingbeck, J., Ciechanover, A., and Schwartz, A. L. (2004) Ubiquitin-proteasome-mediated degradation of Id1 is modulated by MyoD. J. Biol. Chem. 279, 32,614–32,619.

    Article  PubMed  CAS  Google Scholar 

  18. Doolman, R., Leichner, G. S., Avner, R., and Roitelman, J. (2004) Ubiquitin is conjugated by membrane ubiquitin ligase to three sites, including the N terminus, in transmembrane region of mammalian 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for sterol-regulated enzyme degradation. J. Biol. Chem. 279, 38184–38193.

    Article  PubMed  CAS  Google Scholar 

  19. Kuo, M. L., den Besten, W., Bertwistle, D., Roussel, M. F., and Sherr, C. J. (2004) N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes and Dev. 18, 1862–1874.

    Article  PubMed  CAS  Google Scholar 

  20. Ben-Saadon, R., Fajerman, I., Ziv, T., Hellman, U., Schwartz, A. L., and Ciechanover, A. (2004) The tumor suppressor protein p16INK4a and the human papillomavirus oncoprotein E7-58 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system: direct evidence for ubiquitination at the N-terminal residue. J. Biol. Chem. 279, 41,414–41,421.

    Article  PubMed  CAS  Google Scholar 

  21. Sheaff, R. J., Singer, J. D., Swanger, J., Smitherman, M., Roberts, J. M., and Clurman, B. E. (2000) Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol. Cell 5, 403–410.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, X., Chi, Y., Bloecher, A., Aebersold, R., Clurman, B. E., and Roberts, J. M. (2004) N-acetylation and ubiquitin-independent proteasomal degradation of p21 (Cip1). Mol. Cell 16, 839–847.

    Article  PubMed  CAS  Google Scholar 

  23. Varshavsky, A. (1996) The N-end rule: Functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93, 12142–12149.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson, E. S., Ma, P. C., Ota, I. M., and Varshavsky, A. (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456.

    Article  PubMed  CAS  Google Scholar 

  25. Polevoda, B. and Sherman, F. (2003) N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol. 325, 595–622.

    Article  PubMed  CAS  Google Scholar 

  26. Johnston, N. L. and Cohen, R. E. (1991) Uncoupling ubiquitin-protein conjugation from ubiquitin-dependent proteolysis by use of β, γ-nonhydrolyzable ATP analogues. Biochemistry 30, 7514–7522.

    Article  PubMed  CAS  Google Scholar 

  27. Hershko, A. and Rose, I. A. (1987) Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes. Proc. Natl. Acad. Sci. USA 84, 1829–1833.

    Article  PubMed  CAS  Google Scholar 

  28. Hershko, A. and Heller, H. (1985) Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates. Biochem. Biophys. Res. Commun. 128, 1079–1086.

    Article  PubMed  CAS  Google Scholar 

  29. Murakami, Y., Matsufuji, S., Kameji, T., et al. (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 380, 597–599.

    Article  Google Scholar 

Download references

Acknowledgments

Research in the laboratory of A.C. is supported by grants from Prostate Cancer Foundation (PCF) Israel-Centers of Excellence Program, the Israel Science Foundation-Centers of Excellence Program, a Professorship funded by the Israel Cancer Research Fund, ICRF (USA), and the Foundation for Promotion of Research in the Technion. Infrastructural equipment has been purchased with the support of the Wolfson Charitable Fund, Center of Excellence for studies on Turnover of Cellular Proteins and its Implications to Human Diseases.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Ciechanover, A. (2005). N-Terminal Ubiquitination. In: Patterson, C., Cyr, D.M. (eds) Ubiquitin-Proteasome Protocols. Methods in Molecular Biology™, vol 301. Humana Press. https://doi.org/10.1385/1-59259-895-1:255

Download citation

  • DOI: https://doi.org/10.1385/1-59259-895-1:255

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-252-0

  • Online ISBN: 978-1-59259-895-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics