Skip to main content

Recognition and Processing of Misfolded Proteins by PA700, the 19S Regulatory Complex of the 26S Proteasome

  • Protocol
Ubiquitin-Proteasome Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 301))

Summary

The 26S proteasome is composed of the core 20S proteasome in association with the 19S regulatory complex, or PA700. PA700 has multiple activities, including ATPase activity, polyubiquitin-chain binding activity, deubiquitination activity, chaperone-like activity, and substrate remodeling activity. The concerted action of these activities leads to efficient degradation of protein substrates by the 26S proteasome. In this chapter we describe protocols for purifying PA700 and the 20S complexes from bovine red cells and present methods to assay the chaperone-like activity and the substrate remodeling activity of PA700.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeMartino, G. N. and Slaughter, C. A. (1999) The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 274, 22123–22126.

    Article  PubMed  CAS  Google Scholar 

  2. Glickman, M. H. and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 82, 373–428.

    PubMed  CAS  Google Scholar 

  3. Puhler, G., Weinkauf, S., Bachmann, L., et al. (1992) Subunit stoichiometry and threedimensional arrangement in proteasomes from Thermoplasma acidophilum. EMBO J. 11, 1607–1616.

    PubMed  CAS  Google Scholar 

  4. Lupas, A., Zwickl, P., and Baumeister, W. (1994) Proteasome sequences in eubacteria. Trends Biochem. Sci. 19, 533–534.

    Article  PubMed  CAS  Google Scholar 

  5. Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268, 533–539.

    Article  PubMed  CAS  Google Scholar 

  6. Groll, M., Ditzel, L., Lowe, J., et al. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463–471.

    Article  PubMed  CAS  Google Scholar 

  7. Unno, M., Mizushima, T., Morimoto, Y., et al. (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure. (Camb.) 10, 609–618.

    Article  CAS  Google Scholar 

  8. Whitby, F. G., Masters, E. I., Kramer, L., et al. (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120.

    Article  PubMed  CAS  Google Scholar 

  9. Kohler, A., Cascio, P., Leggett, D. S., Woo, K. M., Goldberg, A. L., and Finley, D. (2001) The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 7, 1143–1152.

    Article  PubMed  CAS  Google Scholar 

  10. Touitou, R., Richardson, J., Bose, S., Nakanishi, M., Rivett, J., and Allday, M. J. (2001) A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome. EMBO J. 20, 2367–2375.

    Article  PubMed  CAS  Google Scholar 

  11. Liu, C. W., Corboy, M. J., DeMartino, G. N., and Thomas, P. J. (2003) Endoproteolytic activity of the proteasome. Science 299, 408–411.

    Article  PubMed  CAS  Google Scholar 

  12. Brannigan, J. A., Dodson, G., Duggleby, H. J., et al. (1995) A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378, 416–419.

    Article  PubMed  CAS  Google Scholar 

  13. Gaczynska, M., Goldberg, A. L., Tanaka, K., Hendil, K. B., and Rock, K. L. (1996) Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferongamma-induced subunits LMP2 and LMP7. J. Biol. Chem. 271, 17275–17280.

    Article  PubMed  CAS  Google Scholar 

  14. Gaczynska, M., Rock, K. L., and Goldberg, A. L. (1993) Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264–267.

    Article  PubMed  CAS  Google Scholar 

  15. Navon, A. and Goldberg, A. L. (2001) Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell 8, 1339–1349.

    Article  PubMed  CAS  Google Scholar 

  16. Rape, M., Hoppe, T., Gorr, I., Kalocay, M., Richly, H., and Jentsch, S. (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677.

    Article  PubMed  CAS  Google Scholar 

  17. Lin, L., DeMartino, G. N., and Greene, W. C. (1998) Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 92, 819–828.

    Article  PubMed  CAS  Google Scholar 

  18. Adams, G. M., Crotchett, B., Slaughter, C. A., DeMartino, G. N., and Gogol, E. P. (1998) Formation of proteasome-PA700 complexes directly correlates with activation of peptidase activity. Biochemistry 37, 12927–12932.

    Article  PubMed  CAS  Google Scholar 

  19. Glickman, M. H., Rubin, D. M., Coux, O., et al. (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623.

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalez, F., Delahodde, A., Kodadek, T., and Johnston, S. A. (2002) Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296, 548–550.

    Article  PubMed  CAS  Google Scholar 

  21. Thrower, J. S., Hoffman, L., Rechsteiner, M., and Pickart, C. M. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102.

    Article  PubMed  CAS  Google Scholar 

  22. Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994) A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061.

    PubMed  CAS  Google Scholar 

  23. Fu, H., Sadis, S., Rubin, D. M., Glickman, M., van Nocker, S., Finley, D., and Vierstra, R. D. (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J. Biol. Chem. 273, 1970–1981.

    Article  PubMed  CAS  Google Scholar 

  24. van Nocker, S., Sadis, S., Rubin, D. M., et al. (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell Biol. 16, 6020–6028.

    PubMed  Google Scholar 

  25. Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L., and Pickart, C. M. (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763–767.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang, M., Pickart, C. M., and Coffino, P. (2003) Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J. 22, 1488–1496.

    Article  PubMed  CAS  Google Scholar 

  27. Murakami, Y., Matsufuji, S., Kameji, T., et al. (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360, 597–599.

    Article  PubMed  CAS  Google Scholar 

  28. Elsasser, S., Gali, R. R., Schwickart, M., et al. (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 4, 725–730.

    Article  PubMed  CAS  Google Scholar 

  29. Lam, Y. A., DeMartino, G. N., Pickart, C. M., and Cohen, R. E. (1997) Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes. J. Biol. Chem. 272, 28438–28446.

    Article  PubMed  CAS  Google Scholar 

  30. Yao, T. and Cohen, R. E. (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407.

    Article  PubMed  CAS  Google Scholar 

  31. Verma, R., Aravind, L., Oania, R., et al. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615.

    Article  PubMed  CAS  Google Scholar 

  32. Leggett, D. S., Hanna, J., Borodovsky, A., et al. (2002) Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507.

    Article  PubMed  CAS  Google Scholar 

  33. Ma, C. P., Vu, J. H., Proske, R. J., Slaughter, C. A., and DeMartino, G. N. (1994) Identification, purification, and characterization of a high molecular weight, ATP-dependent activator (PA700) of the 20 S proteasome. J. Biol. Chem. 269, 3539–3547.

    CAS  Google Scholar 

  34. Johnson, E. S., Ma, P. C., Ota, I. M., and Varshavsky, A. (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456.

    Article  PubMed  CAS  Google Scholar 

  35. Strickland, E., Hakala, K., Thomas, P. J., and DeMartino, G. N. (2000) Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J. Biol. Chem. 275, 5565–5572.

    Article  PubMed  CAS  Google Scholar 

  36. Braun, B. C., Glickman, M., Kraft, R., et al. (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol. 1, 221–226.

    Article  PubMed  CAS  Google Scholar 

  37. Weber-Ban, E. U., Reid, B. G., Miranker, A. D., and Horwich, A. L. (1999) Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93.

    Article  PubMed  CAS  Google Scholar 

  38. Liu, C. W., Millen, L., Roman, T. B., et al. (2002) Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome. J. Biol. Chem. 277, 26815–26820.

    Article  PubMed  CAS  Google Scholar 

  39. Qu, B. H. and Thomas, P. J. (1996) Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway. J. Biol. Chem. 271, 7261–7264.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Welch Foundation (to P. J. T.), MDA (to G. N. D.), NIH-DK46818 (to G. N. D.), and NIH-DK49835 (to P. J. T.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Liu, CW., Strickland, E., DeMartino, G.N., Thomas, P.J. (2005). Recognition and Processing of Misfolded Proteins by PA700, the 19S Regulatory Complex of the 26S Proteasome. In: Patterson, C., Cyr, D.M. (eds) Ubiquitin-Proteasome Protocols. Methods in Molecular Biology™, vol 301. Humana Press. https://doi.org/10.1385/1-59259-895-1:071

Download citation

  • DOI: https://doi.org/10.1385/1-59259-895-1:071

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-252-0

  • Online ISBN: 978-1-59259-895-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics